ReductionCell.py 9.49 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import math
from numpy.core.fromnumeric import resize, shape
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import numpy as np
from .token_transformer import Token_transformer
from .token_performer import Token_performer
from .window import WindowTransformerBlock, window_partition, window_reverse


class PRM(nn.Module):
    def __init__(self, img_size=224, kernel_size=4, downsample_ratio=4, dilations=[1,6,12], in_chans=3, embed_dim=64, share_weights=False, op='cat'):
        super().__init__()
        self.dilations = dilations
        self.embed_dim = embed_dim
        self.downsample_ratio = downsample_ratio
        self.op = op
        self.kernel_size = kernel_size
        self.stride = downsample_ratio
        self.share_weights = share_weights
        self.outSize = img_size // downsample_ratio

        if share_weights:
            self.convolution = nn.Conv2d(in_channels=in_chans, out_channels=embed_dim, kernel_size=self.kernel_size, \
                stride=self.stride, padding=3*dilations[0]//2, dilation=dilations[0])

        else:
            self.convs = nn.ModuleList()
            for dilation in self.dilations:
                padding = math.ceil(((self.kernel_size-1)*dilation + 1 - self.stride) / 2)
                self.convs.append(nn.Sequential(*[nn.Conv2d(in_channels=in_chans, out_channels=embed_dim, kernel_size=self.kernel_size, \
                    stride=self.stride, padding=padding, dilation=dilation),
                    nn.GELU()]))

        if self.op == 'sum':
            self.out_chans = embed_dim
        elif op == 'cat':
            self.out_chans = embed_dim * len(self.dilations)

    def forward(self, x):
        B, C, W, H = x.shape
        if self.share_weights:
            padding = math.ceil(((self.kernel_size-1)*self.dilations[0] + 1 - self.stride) / 2)
            y = nn.functional.conv2d(x, weight=self.convolution.weight, bias=self.convolution.bias, \
                stride=self.downsample_ratio, padding=padding, dilation=self.dilations[0]).unsqueeze(dim=-1)
            for i in range(1, len(self.dilations)):
                padding = math.ceil(((self.kernel_size-1)*self.dilations[i] + 1 - self.stride) / 2)
                _y = nn.functional.conv2d(x, weight=self.convolution.weight, bias=self.convolution.bias, \
                    stride=self.downsample_ratio, padding=padding, dilation=self.dilations[i]).unsqueeze(dim=-1)
                y = torch.cat((y, _y), dim=-1)
        else:
            y = self.convs[0](x).unsqueeze(dim=-1)
            for i in range(1, len(self.dilations)):
                _y = self.convs[i](x).unsqueeze(dim=-1)
                y = torch.cat((y, _y), dim=-1)
        B, C, W, H, N = y.shape
        if self.op == 'sum':
            y = y.sum(dim=-1).flatten(2).permute(0,2,1).contiguous()
        elif self.op == 'cat':
            y = y.permute(0,4,1,2,3).flatten(3).reshape(B, N*C, W*H).permute(0,2,1).contiguous()
        else:
            raise NotImplementedError('no such operation: {} for multi-levels!'.format(self.op))
        return y, (W, H)

class ReductionCell(nn.Module):
    def __init__(self, img_size=224, in_chans=3, embed_dims=64, token_dims=64, downsample_ratios=4, kernel_size=7,
                 num_heads=1, dilations=[1,2,3,4], share_weights=False, op='cat', tokens_type='performer', group=1,
                 drop=0., attn_drop=0., drop_path=0., mlp_ratio=1.0, gamma=False, init_values=1e-4, SE=False, window_size=7):
        super().__init__()

        self.img_size = img_size
        self.window_size = window_size
        self.op = op
        self.dilations = dilations
        self.num_heads = num_heads
        self.embed_dims = embed_dims
        self.token_dims = token_dims
        self.in_chans = in_chans
        self.downsample_ratios = downsample_ratios
        self.kernel_size = kernel_size
        self.outSize = img_size
        PCMStride = []
        residual = downsample_ratios // 2
        for _ in range(3):
            PCMStride.append((residual > 0) + 1)
            residual = residual // 2
        assert residual == 0
        self.pool = None
        self.tokens_type = tokens_type
        if tokens_type == 'pooling':
            PCMStride = [1, 1, 1]
            self.pool = nn.MaxPool2d(downsample_ratios, stride=downsample_ratios, padding=0)
            tokens_type = 'transformer'
            self.outSize = self.outSize // downsample_ratios
            downsample_ratios = 1

        self.PCM = nn.Sequential(
                        nn.Conv2d(in_chans, embed_dims, kernel_size=(3, 3), stride=PCMStride[0], padding=(1, 1), groups=group),  # the 1st convolution
                        nn.BatchNorm2d(embed_dims),
                        nn.SiLU(inplace=True),
                        nn.Conv2d(embed_dims, embed_dims, kernel_size=(3, 3), stride=PCMStride[1], padding=(1, 1), groups=group),  # the 1st convolution
                        nn.BatchNorm2d(embed_dims),
                        nn.SiLU(inplace=True),
                        nn.Conv2d(embed_dims, token_dims, kernel_size=(3, 3), stride=PCMStride[2], padding=(1, 1), groups=group),  # the 1st convolution
                    )

        self.PRM = PRM(img_size=img_size, kernel_size=kernel_size, downsample_ratio=downsample_ratios, dilations=self.dilations,
            in_chans=in_chans, embed_dim=embed_dims, share_weights=share_weights, op=op)
        self.outSize = self.outSize // downsample_ratios

        in_chans = self.PRM.out_chans
        if tokens_type == 'performer':
            # assert num_heads == 1
            self.attn = Token_performer(dim=in_chans, in_dim=token_dims, head_cnt=num_heads, kernel_ratio=0.5, gamma=gamma, init_values=init_values)
        elif tokens_type == 'performer_less':
            self.attn = None
            self.PCM = None
        elif tokens_type == 'transformer':
            self.attn = Token_transformer(dim=in_chans, in_dim=token_dims, num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop,
                                          attn_drop=attn_drop, drop_path=drop_path, gamma=gamma, init_values=init_values)
        elif tokens_type == 'window':
            self.attn = WindowTransformerBlock(in_dim=in_chans, out_dim=token_dims, input_resolution=(self.img_size//self.downsample_ratios, self.img_size//self.downsample_ratios),
                                            num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop,
                                            attn_drop=attn_drop, drop_path=drop_path, window_size=window_size, shift_size=0)

        if gamma:
            self.gamma2 = nn.Parameter(init_values * torch.ones((token_dims)),requires_grad=True)
            self.gamma3 = nn.Parameter(init_values * torch.ones((token_dims)),requires_grad=True)
        else:
            self.gamma2 = 1
            self.gamma3 = 1

        self.num_patches = (img_size // 2) * (img_size // 2)  # there are 3 sfot split, stride are 4,2,2 seperately

    def forward(self, x, size):
        H, W = size
        if len(x.shape) < 4:
            B, N, C  = x.shape
            # n = int(np.sqrt(N))
            x = x.view(B, H, W, C).contiguous()
            x = x.permute(0, 3, 1, 2)
        if self.pool is not None:
            x = self.pool(x)
        shortcut = x
        PRM_x, _ = self.PRM(x)
        H, W = H // self.downsample_ratios, W // self.downsample_ratios
        B, N, C = PRM_x.shape
        assert N == H * W
        if self.tokens_type == 'window':
            # H, W = self.img_size // self.downsample_ratios, self.img_size // self.downsample_ratios
            # b, _, c = PRM_x.shape
            x = self.attn.norm1(PRM_x)
            padding_td = (self.window_size - H % self.window_size) % self.window_size
            padding_top = padding_td // 2
            padding_down = padding_td - padding_top
            padding_lr = (self.window_size - W % self.window_size) % self.window_size
            padding_left = padding_lr // 2
            padding_right = padding_lr - padding_left
            x = x.view(B, H, W, C).permute(0, 3, 1, 2)
            x = nn.functional.pad(x, (padding_left, padding_right, padding_top, padding_down))
            x = x.permute(0, 2, 3, 1)

            x_windows = window_partition(x, self.window_size)
            x_windows = x_windows.view(-1, self.window_size * self.window_size, C)
            attn_windows = self.attn.attn(x_windows, mask=self.attn.attn_mask)  # nW*B, window_size*window_size, C
            attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.token_dims)
            shifted_x = window_reverse(attn_windows, self.window_size, H+padding_td, W+padding_lr)  # B H' W' C
            x = shifted_x
            x = x[:, padding_top:padding_top+H, padding_left:padding_left+W, :]
            x = x.reshape(B, H * W, self.token_dims)

            convX = self.PCM(shortcut)
            convX = convX.permute(0, 2, 3, 1).view(*x.shape).contiguous()
            x = x + self.attn.drop_path(convX * self.gamma2)
            # x = shortcut + self.attn.drop_path(x)
            # x = x + self.attn.drop_path(self.attn.mlp(self.attn.norm2(x)))
            x = x + self.attn.drop_path(self.gamma3 * self.attn.mlp(self.attn.norm2(x)))
        else:
            if self.attn is None:
                return PRM_x
            convX = self.PCM(shortcut)
            x = self.attn.attn(self.attn.norm1(PRM_x))
            convX = convX.permute(0, 2, 3, 1).view(*x.shape).contiguous()
            x = x + self.attn.drop_path(convX * self.gamma2)
            x = x + self.attn.drop_path(self.gamma3 * self.attn.mlp(self.attn.norm2(x)))

        return x, (H, W)