"sgl-kernel/csrc/cpu/activation.cpp" did not exist on "89a554181f68554ded136545862757cb3b5d4ae1"
detection_transformer.py 11.6 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from adet.layers.deformable_transformer import DeformableTransformer
from adet.utils.misc import (
    NestedTensor,
    inverse_sigmoid_offset,
    nested_tensor_from_tensor_list,
    sigmoid_offset
)
from adet.modeling.model.utils import MLP


class DETECTION_TRANSFORMER(nn.Module):
    def __init__(self, cfg, backbone):
        super().__init__()
        self.device = torch.device(cfg.MODEL.DEVICE)

        self.backbone = backbone

        self.d_model = cfg.MODEL.TRANSFORMER.HIDDEN_DIM
        self.nhead = cfg.MODEL.TRANSFORMER.NHEADS
        self.num_encoder_layers = cfg.MODEL.TRANSFORMER.ENC_LAYERS
        self.num_decoder_layers = cfg.MODEL.TRANSFORMER.DEC_LAYERS
        self.dim_feedforward = cfg.MODEL.TRANSFORMER.DIM_FEEDFORWARD
        self.dropout = cfg.MODEL.TRANSFORMER.DROPOUT
        self.activation = "relu"
        self.return_intermediate_dec = True
        self.num_feature_levels = cfg.MODEL.TRANSFORMER.NUM_FEATURE_LEVELS
        self.dec_n_points = cfg.MODEL.TRANSFORMER.ENC_N_POINTS
        self.enc_n_points = cfg.MODEL.TRANSFORMER.DEC_N_POINTS
        self.pos_embed_scale = cfg.MODEL.TRANSFORMER.POSITION_EMBEDDING_SCALE
        self.num_classes = 1 # text or not text
        self.voc_size = cfg.MODEL.TRANSFORMER.VOC_SIZE
        self.sigmoid_offset = False

        self.num_proposals = cfg.MODEL.TRANSFORMER.NUM_QUERIES
        self.num_points = cfg.MODEL.TRANSFORMER.NUM_POINTS
        self.point_embed = nn.Embedding(self.num_proposals * self.num_points, self.d_model)

        self.transformer = DeformableTransformer(
            temp=cfg.MODEL.TRANSFORMER.TEMPERATURE,
            d_model=self.d_model,
            nhead=self.nhead,
            num_encoder_layers=self.num_encoder_layers,
            num_decoder_layers=self.num_decoder_layers,
            dim_feedforward=self.dim_feedforward,
            dropout=self.dropout,
            activation=self.activation,
            return_intermediate_dec=self.return_intermediate_dec,
            num_feature_levels=self.num_feature_levels,
            dec_n_points=self.dec_n_points,
            enc_n_points=self.enc_n_points,
            num_proposals=self.num_proposals,
            num_points=self.num_points
        )

        if self.num_feature_levels > 1:
            strides = [8, 16, 32]
            if cfg.MODEL.BACKBONE.NAME == 'build_swin_backbone':
                if cfg.MODEL.SWIN.TYPE == 'tiny' or 'small':
                    num_channels = [192, 384, 768]
                else:
                    raise NotImplementedError
            elif cfg.MODEL.BACKBONE.NAME == 'build_vitaev2_backbone':
                if cfg.MODEL.ViTAEv2.TYPE == 'vitaev2_s':
                    num_channels = [128, 256, 512]
                else:
                    raise NotImplementedError
            else:
                num_channels = [512, 1024, 2048]

            num_backbone_outs = len(strides)
            input_proj_list = []
            for _ in range(num_backbone_outs):
                in_channels = num_channels[_]
                input_proj_list.append(
                    nn.Sequential(
                        nn.Conv2d(in_channels, self.d_model, kernel_size=1),
                        nn.GroupNorm(32, self.d_model),
                    )
                )
            for _ in range(self.num_feature_levels - num_backbone_outs):
                input_proj_list.append(
                    nn.Sequential(
                        nn.Conv2d(in_channels, self.d_model, kernel_size=3, stride=2, padding=1),
                        nn.GroupNorm(32, self.d_model),
                    )
                )
                in_channels = self.d_model
            self.input_proj = nn.ModuleList(input_proj_list)
        else:
            strides = [32]
            num_channels = [2048]
            self.input_proj = nn.ModuleList(
                [
                    nn.Sequential(
                        nn.Conv2d(
                            num_channels[0], self.d_model, kernel_size=1),
                        nn.GroupNorm(32, self.d_model),
                    )
                ]
            )
        for proj in self.input_proj:
            nn.init.xavier_uniform_(proj[0].weight, gain=1)
            nn.init.constant_(proj[0].bias, 0)
        self.aux_loss = cfg.MODEL.TRANSFORMER.AUX_LOSS

        # bezier center line proposal after the encoder
        # x_0, y_0, ... , x_3, y_3
        self.bezier_proposal_coord = MLP(self.d_model, self.d_model, 8, 3)
        self.bezier_proposal_class = nn.Linear(self.d_model, self.num_classes)  # text or non-text
        # task specific heads after the decoder
        self.ctrl_point_coord = MLP(self.d_model, self.d_model, 2, 3)
        self.ctrl_point_class = nn.Linear(self.d_model, self.num_classes)  # text or non-text
        self.ctrl_point_text = nn.Linear(self.d_model, self.voc_size + 1)  # specific character class for each point
        self.boundary_head_on = cfg.MODEL.TRANSFORMER.BOUNDARY_HEAD
        if self.boundary_head_on:
            self.boundary_offset = MLP(self.d_model, self.d_model, 4, 3)  # to rebuild the text boundary from queries

        prior_prob = 0.01
        bias_value = -np.log((1 - prior_prob) / prior_prob)
        self.bezier_proposal_class.bias.data = torch.ones(self.num_classes) * bias_value
        self.ctrl_point_class.bias.data = torch.ones(self.num_classes) * bias_value
        self.ctrl_point_text.bias.data = torch.ones(self.voc_size + 1) * bias_value

        nn.init.constant_(self.bezier_proposal_coord.layers[-1].weight.data, 0)
        nn.init.constant_(self.bezier_proposal_coord.layers[-1].bias.data, 0)
        self.transformer.bezier_coord_embed = self.bezier_proposal_coord
        self.transformer.bezier_class_embed = self.bezier_proposal_class

        nn.init.constant_(self.ctrl_point_coord.layers[-1].weight.data, 0)
        nn.init.constant_(self.ctrl_point_coord.layers[-1].bias.data, 0)
        if self.boundary_head_on:
            nn.init.constant_(self.boundary_offset.layers[-1].weight.data, 0)
            nn.init.constant_(self.boundary_offset.layers[-1].bias.data, 0)

        ######################################################################
        # shared prediction heads
        ######################################################################
        num_pred = self.num_decoder_layers
        self.ctrl_point_coord = nn.ModuleList(
            [self.ctrl_point_coord for _ in range(num_pred)]
        )
        self.ctrl_point_class = nn.ModuleList(
            [self.ctrl_point_class for _ in range(num_pred)]
        )
        self.ctrl_point_text = nn.ModuleList(
            [self.ctrl_point_text for _ in range(num_pred)]
        )
        if self.boundary_head_on:
            self.boundary_offset = nn.ModuleList(
                [self.boundary_offset for _ in range(num_pred)]
            )

        self.transformer.decoder.ctrl_point_coord = self.ctrl_point_coord

        self.to(self.device)

    def forward(self, samples: NestedTensor):
        """ The forward expects a NestedTensor, which consists of:
               - samples.tensor: batched images, of shape [batch_size x 3 x H x W]
               - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
        """
        if isinstance(samples, (list, torch.Tensor)):
            samples = nested_tensor_from_tensor_list(samples)
        features, pos = self.backbone(samples)

        srcs = []
        masks = []
        for l, feat in enumerate(features):
            src, mask = feat.decompose()
            srcs.append(self.input_proj[l](src))
            masks.append(mask)
            assert mask is not None
        if self.num_feature_levels > len(srcs):
            _len_srcs = len(srcs)
            for l in range(_len_srcs, self.num_feature_levels):
                if l == _len_srcs:
                    src = self.input_proj[l](features[-1].tensors)
                else:
                    src = self.input_proj[l](srcs[-1])
                m = masks[0]
                mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
                pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
                srcs.append(src)
                masks.append(mask)
                pos.append(pos_l)

        # (n_proposal x n_pts, d_model) -> (n_proposal, n_pts, d_model)
        point_embed = self.point_embed.weight.reshape((self.num_proposals, self.num_points, self.d_model)) # not shared

        (
            hs,
            init_reference,
            inter_references,
            enc_outputs_class,
            enc_outputs_coord_unact
        ) = self.transformer(srcs, masks, pos, point_embed)

        outputs_texts = []
        outputs_coords = []
        outputs_classes = []
        if self.boundary_head_on:
            outputs_bd_coords = []

        for lvl in range(hs.shape[0]):
            if lvl == 0:
                reference = init_reference
            else:
                reference = inter_references[lvl - 1]
            # hs shape: (bs, n_proposal, n_pts, d_model)
            reference = inverse_sigmoid_offset(reference, offset=self.sigmoid_offset)
            outputs_class = self.ctrl_point_class[lvl](hs[lvl])
            outputs_text = self.ctrl_point_text[lvl](hs[lvl])  # bs, n_proposal, n_pts, voc_size
            tmp = self.ctrl_point_coord[lvl](hs[lvl])
            if self.boundary_head_on:
                tmp_bd = self.boundary_offset[lvl](hs[lvl])

            if reference.shape[-1] == 2:
                tmp += reference
                if self.boundary_head_on:
                    tmp_bd += reference.repeat(1, 1, 1, 2)
            else:
                raise NotImplementedError

            outputs_coord = sigmoid_offset(tmp, offset=self.sigmoid_offset)
            if self.boundary_head_on:
                outputs_bd_coord = sigmoid_offset(tmp_bd, offset=self.sigmoid_offset)
                outputs_bd_coords.append(outputs_bd_coord)

            outputs_classes.append(outputs_class)
            outputs_texts.append(outputs_text)
            outputs_coords.append(outputs_coord)

        outputs_class = torch.stack(outputs_classes)
        outputs_text = torch.stack(outputs_texts)
        outputs_coord = torch.stack(outputs_coords)
        if self.boundary_head_on:
            outputs_bd_coord = torch.stack(outputs_bd_coords)

        out = {
            'pred_logits': outputs_class[-1],
            'pred_text_logits': outputs_text[-1],
            'pred_ctrl_points': outputs_coord[-1],
            'pred_bd_points': outputs_bd_coord[-1] if self.boundary_head_on else None
        }

        if self.aux_loss:
            out['aux_outputs'] = self._set_aux_loss(
                outputs_class,
                outputs_text,
                outputs_coord,
                outputs_bd_coord if self.boundary_head_on else None
            )

        enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
        out['enc_outputs'] = {
            'pred_logits': enc_outputs_class,
            'pred_beziers': enc_outputs_coord
        }

        return out

    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_text, outputs_coord, outputs_bd_coord):
        if outputs_bd_coord is not None:
            return [
                {'pred_logits': a, 'pred_text_logits': b, 'pred_ctrl_points': c, 'pred_bd_points': d}
                for a, b, c, d in zip(outputs_class[:-1], outputs_text[:-1], outputs_coord[:-1], outputs_bd_coord[:-1])
            ]
        else:
            return [
                {'pred_logits': a, 'pred_text_logits': b, 'pred_ctrl_points': c}
                for a, b, c in zip(outputs_class[:-1], outputs_text[:-1], outputs_coord[:-1])
            ]