text_evaluation_all.py 23.1 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import contextlib
import copy
import io
import itertools
import json
import logging
import numpy as np
import os
import re
import torch
from collections import OrderedDict
from fvcore.common.file_io import PathManager
from pycocotools.coco import COCO

from detectron2.utils import comm
from detectron2.data import MetadataCatalog
from detectron2.evaluation.evaluator import DatasetEvaluator

import glob
import shutil
from shapely.geometry import Polygon, LinearRing
from adet.evaluation import text_eval_script
from adet.evaluation import text_eval_script_ic15
import zipfile
import pickle
import editdistance
import cv2


class TextEvaluator():
    """
    Evaluate text proposals and recognition.
    """

    def __init__(self, dataset_name, cfg, distributed, output_dir=None):
        self._tasks = ("polygon", "recognition")
        self._distributed = distributed
        self._output_dir = output_dir

        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)

        self._metadata = MetadataCatalog.get(dataset_name)
        if not hasattr(self._metadata, "json_file"):
            raise AttributeError(
                f"json_file was not found in MetaDataCatalog for '{dataset_name}'."
            )

        self.voc_size = cfg.MODEL.TRANSFORMER.VOC_SIZE
        self.use_customer_dict = cfg.MODEL.TRANSFORMER.CUSTOM_DICT
        if self.voc_size == 37:
            self.CTLABELS = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
                             't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
        elif self.voc_size == 96:
            self.CTLABELS = [' ','!','"','#','$','%','&','\'','(',')','*','+',',','-','.','/',
                             '0','1','2','3','4','5','6','7','8','9',':',';','<','=','>','?','@',
                             'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V',
                             'W','X','Y','Z','[','\\',']','^','_','`','a','b','c','d','e','f','g','h','i','j','k','l',
                             'm','n','o','p','q','r','s','t','u','v','w','x','y','z','{','|','}','~']
        else:
            with open(self.use_customer_dict, 'rb') as fp:
                self.CTLABELS = pickle.load(fp)

        # voc_size includes the unknown class, which is not in self.CTABLES
        assert(int(self.voc_size - 1) == len(self.CTLABELS)), "voc_size is not matched dictionary size, got {} and {}.".format(int(self.voc_size - 1), len(self.CTLABELS))

        json_file = PathManager.get_local_path(self._metadata.json_file)
        with contextlib.redirect_stdout(io.StringIO()):
            self._coco_api = COCO(json_file)

        self.dataset_name = dataset_name
        self.submit = False
        # use dataset_name to decide eval_gt_path
        self.lexicon_type = cfg.TEST.LEXICON_TYPE
        if "totaltext" in dataset_name:
            self._text_eval_gt_path = "datasets/evaluation/gt_totaltext.zip"
            self._word_spotting = True
            self.dataset_name = "totaltext"
        elif "ctw1500" in dataset_name:
            self._text_eval_gt_path = "datasets/evaluation/gt_ctw1500.zip"
            self._word_spotting = False
            self.dataset_name = "ctw1500"
        elif "ic15" in dataset_name:
            self._text_eval_gt_path = "datasets/evaluation/gt_icdar2015.zip"
            self._word_spotting = False
            self.dataset_name = "ic15"
        elif "inversetext" in dataset_name:
            self._text_eval_gt_path = "datasets/evaluation/gt_inversetext.zip"
            self._word_spotting = False
            self.dataset_name = "inversetext"
        elif "rects" in dataset_name:
            self.submit = True
            self._text_eval_gt_path = ""
            self.dataset_name = "rects"
        else:
            raise NotImplementedError

    def reset(self):
        self._predictions = []

    def process(self, inputs, outputs):
        for input, output in zip(inputs, outputs):
            prediction = {"image_id": input["image_id"]}
            instances = output["instances"].to(self._cpu_device)
            prediction["instances"] = self.instances_to_coco_json(instances, input)
            self._predictions.append(prediction)

    def to_eval_format(self, file_path, temp_dir="temp_det_results"):
        def fis_ascii(s):
            a = (ord(c) < 128 for c in s)
            return all(a)

        def de_ascii(s):
            a = [c for c in s if ord(c) < 128]
            outa = ''
            for i in a:
                outa +=i
            return outa

        with open(file_path, 'r') as f:
            data = json.load(f)
            with open('temp_all_det_cors.txt', 'w') as f2:
                for ix in range(len(data)):
                    if data[ix]['score'] > 0.1:
                        outstr = '{}: '.format(data[ix]['image_id'])
                        for i in range(len(data[ix]['polys'])):
                            if "ctw1500" in self.dataset_name:
                                # there are many boundary points on each side, 'float' type is used for ctw1500
                                # the original implementation in Adelaidet adopts 'int'
                                outstr = outstr + str(float(data[ix]['polys'][i][0])) +\
                                         ','+str(float(data[ix]['polys'][i][1])) +','
                            else:
                                outstr = outstr + str(int(data[ix]['polys'][i][0])) + \
                                         ',' + str(int(data[ix]['polys'][i][1])) + ','

                        ass = str(data[ix]['rec'])
                        if len(ass)>=0: # 
                            outstr = outstr + str(round(data[ix]['score'], 3)) +',####'+ass+'\n'	
                            f2.writelines(outstr)
                f2.close()
        dirn = temp_dir
        fres = open('temp_all_det_cors.txt', 'r').readlines()
        if not os.path.isdir(dirn):
            os.mkdir(dirn)
        for line in fres:
            line = line.strip()
            s = line.split(': ')
            filename = '{:07d}.txt'.format(int(s[0]))
            outName = os.path.join(dirn, filename)
            with open(outName, 'a') as fout:
                ptr = s[1].strip().split(',####')
                score = ptr[0].split(',')[-1]
                cors = ','.join(e for e in ptr[0].split(',')[:-1])
                fout.writelines(cors+',####'+str(ptr[1])+'\n')
        os.remove("temp_all_det_cors.txt")

    def sort_detection(self, temp_dir):
        origin_file = temp_dir
        output_file = "final_"+temp_dir
        output_file_full = "full_final_"+temp_dir
        if not os.path.isdir(output_file_full):
            os.mkdir(output_file_full)
        if not os.path.isdir(output_file):
            os.mkdir(output_file)
        files = glob.glob(origin_file+'*.txt')
        files.sort()
        if "totaltext" in self.dataset_name:
            if not self.lexicon_type == None:
                lexicon_path = 'datasets/totaltext/weak_voc_new.txt'
                lexicon_fid=open(lexicon_path, 'r')
                pair_list = open('datasets/totaltext/weak_voc_pair_list.txt', 'r')
                pairs = dict()
                for line in pair_list.readlines():
                    line=line.strip()
                    word = line.split(' ')[0].upper()
                    word_gt = line[len(word)+1:]
                    pairs[word] = word_gt
                lexicon_fid=open(lexicon_path, 'r')
                lexicon=[]
                for line in lexicon_fid.readlines():
                    line=line.strip()
                    lexicon.append(line)
        elif "ctw1500" in self.dataset_name:
            if not self.lexicon_type == None:
                lexicon_path = 'datasets/ctw1500/weak_voc_new.txt'
                lexicon_fid=open(lexicon_path, 'r')
                pair_list = open('datasets/ctw1500/weak_voc_pair_list.txt', 'r')
                pairs = dict()
                lexicon_fid=open(lexicon_path, 'r')
                lexicon=[]
                for line in lexicon_fid.readlines():
                    line=line.strip()
                    lexicon.append(line)
                    pairs[line.upper()] = line
        elif "ic15" in self.dataset_name:
            if self.lexicon_type==1: 
                # generic lexicon
                lexicon_path = 'datasets/ic15/GenericVocabulary_new.txt'
                lexicon_fid=open(lexicon_path, 'r')
                pair_list = open('datasets/ic15/GenericVocabulary_pair_list.txt', 'r')
                pairs = dict()
                for line in pair_list.readlines():
                    line=line.strip()
                    word = line.split(' ')[0].upper()
                    word_gt = line[len(word)+1:]
                    pairs[word] = word_gt
                lexicon_fid=open(lexicon_path, 'r')
                lexicon=[]
                for line in lexicon_fid.readlines():
                    line=line.strip()
                    lexicon.append(line)
            if self.lexicon_type==2:
                # weak lexicon
                lexicon_path = 'datasets/ic15/ch4_test_vocabulary_new.txt'
                lexicon_fid=open(lexicon_path, 'r')
                pair_list = open('datasets/ic15/ch4_test_vocabulary_pair_list.txt', 'r')
                pairs = dict()
                for line in pair_list.readlines():
                    line=line.strip()
                    word = line.split(' ')[0].upper()
                    word_gt = line[len(word)+1:]
                    pairs[word] = word_gt
                lexicon_fid=open(lexicon_path, 'r')
                lexicon=[]
                for line in lexicon_fid.readlines():
                    line=line.strip()
                    lexicon.append(line)
        elif "inversetext" in self.dataset_name:
            if not self.lexicon_type == None:
                lexicon_path = 'datasets/inversetext/inversetext_lexicon.txt'
                lexicon_fid=open(lexicon_path, 'r')
                pair_list = open('datasets/inversetext/inversetext_pair_list.txt', 'r')
                pairs = dict()
                for line in pair_list.readlines():
                    line=line.strip()
                    word = line.split(' ')[0].upper()
                    word_gt = line[len(word)+1:]
                    pairs[word] = word_gt
                lexicon_fid=open(lexicon_path, 'r')
                lexicon=[]
                for line in lexicon_fid.readlines():
                    line=line.strip()
                    lexicon.append(line)

        def find_match_word(rec_str, pairs, lexicon=None):
            rec_str = rec_str.upper()
            dist_min = 100
            dist_min_pre = 100
            match_word = ''
            match_dist = 100
            for word in lexicon:
                word = word.upper()
                ed = editdistance.eval(rec_str, word)
                length_dist = abs(len(word) - len(rec_str))
                dist = ed
                if dist<dist_min:
                    dist_min = dist
                    match_word = pairs[word]
                    match_dist = dist
            return match_word, match_dist

        for i in files:
            if "ic15" in self.dataset_name:
                out = output_file + 'res_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
                out_full = output_file_full + 'res_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
                if self.lexicon_type==3:
                    lexicon_path = 'datasets/ic15/new_strong_lexicon/new_voc_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt'
                    lexicon_fid=open(lexicon_path, 'r')
                    pair_list = open('datasets/ic15/new_strong_lexicon/pair_voc_img_' + str(int(i.split('/')[-1].split('.')[0])) + '.txt')
                    pairs = dict()
                    for line in pair_list.readlines():
                        line=line.strip()
                        word = line.split(' ')[0].upper()
                        word_gt = line[len(word)+1:]
                        pairs[word] = word_gt
                    lexicon_fid=open(lexicon_path, 'r')
                    lexicon=[]
                    for line in lexicon_fid.readlines():
                        line=line.strip()
                        lexicon.append(line)
            else:
                out = i.replace(origin_file, output_file)
                out_full = i.replace(origin_file, output_file_full)
            fin = open(i, 'r').readlines()
            fout = open(out, 'w')
            fout_full = open(out_full, 'w')
            for iline, line in enumerate(fin):
                ptr = line.strip().split(',####')
                rec  = ptr[1]
                cors = ptr[0].split(',')
                assert(len(cors) %2 == 0), 'cors invalid.'
                if "ctw1500" in self.dataset_name:
                    pts = [(float(cors[j]), float(cors[j+1])) for j in range(0,len(cors),2)] # int->float
                else:
                    pts = [(int(cors[j]), int(cors[j + 1])) for j in range(0, len(cors), 2)]
                try:
                    pgt = Polygon(pts)
                except Exception as e:
                    print(e)
                    print('An invalid detection in {} line {} is removed ... '.format(i, iline))
                    continue
                
                if not pgt.is_valid:
                    print('An invalid detection in {} line {} is removed ... '.format(i, iline))
                    continue
                    
                pRing = LinearRing(pts)
                if not "ic15" in self.dataset_name:
                    if pRing.is_ccw:
                        pts.reverse()
                outstr = ''
                for ipt in pts:
                    if "ctw1500" in self.dataset_name:
                        outstr += (str(float(ipt[0]))+','+ str(float(ipt[1]))+',')  # int->float
                    else:
                        outstr += (str(int(ipt[0])) + ',' + str(int(ipt[1])) + ',')
                outstr = outstr[:-1]
                pts = outstr
                if "ic15" in self.dataset_name:
                    outstr = outstr + ',' + rec
                else:
                    outstr = outstr + ',####' + rec
                fout.writelines(outstr+'\n')
                if self.lexicon_type is None:
                    rec_full = rec
                else:
                    match_word, match_dist = find_match_word(rec,pairs,lexicon)
                    if match_dist<1.5:
                        rec_full = match_word
                        if "ic15" in self.dataset_name:
                            pts = pts + ',' + rec_full
                        else:
                            pts = pts + ',####' + rec_full
                        fout_full.writelines(pts+'\n')
            fout.close()
            fout_full.close()

        def zipdir(path, ziph):
            # ziph is zipfile handle
            for root, dirs, files in os.walk(path):
                for file in files:
                    ziph.write(os.path.join(root, file))

        if "ic15" in self.dataset_name:
            os.system('zip -r -q -j '+'det.zip'+' '+output_file+'/*')
            os.system('zip -r -q -j '+'det_full.zip'+' '+output_file_full+'/*')
            shutil.rmtree(origin_file)
            shutil.rmtree(output_file)
            shutil.rmtree(output_file_full)
            return "det.zip", "det_full.zip"
        else:
            os.chdir(output_file)
            zipf = zipfile.ZipFile('../det.zip', 'w', zipfile.ZIP_DEFLATED)
            zipdir('./', zipf)
            zipf.close()
            os.chdir("../")

            os.chdir(output_file_full)
            zipf_full = zipfile.ZipFile('../det_full.zip', 'w', zipfile.ZIP_DEFLATED)
            zipdir('./', zipf_full)
            zipf_full.close()
            os.chdir("../")
            # clean temp files

            shutil.rmtree(origin_file)
            shutil.rmtree(output_file)
            shutil.rmtree(output_file_full)
            return "det.zip", "det_full.zip"
    
    def evaluate_with_official_code(self, result_path, gt_path):
        if "ic15" in self.dataset_name:
            return text_eval_script_ic15.text_eval_main_ic15(det_file=result_path, gt_file=gt_path, is_word_spotting=self._word_spotting)
        else:
            return text_eval_script.text_eval_main(det_file=result_path, gt_file=gt_path, is_word_spotting=self._word_spotting)

    def evaluate(self):
        if self._distributed:
            comm.synchronize()
            predictions = comm.gather(self._predictions, dst=0)
            predictions = list(itertools.chain(*predictions))

            if not comm.is_main_process():
                return {}
        else:
            predictions = self._predictions

        if len(predictions) == 0:
            self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
            return {}

        PathManager.mkdirs(self._output_dir)
        if self.submit:
            file_path = os.path.join(self._output_dir, self.dataset_name+"_submit.txt")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                for prediction in predictions:
                    write_id = "{:06d}".format(prediction["image_id"]+1)
                    write_img_name = "test_"+write_id+'.jpg\n'
                    f.write(write_img_name)
                    if len(prediction["instances"]) > 0:
                        for inst in prediction["instances"]:
                            write_poly, write_text = inst["polys"], inst["rec"]
                            if write_text == '':
                                continue
                            if not LinearRing(write_poly).is_ccw:
                                write_poly.reverse()
                            write_poly = np.array(write_poly).reshape(-1).tolist()
                            write_poly = ','.join(list(map(str,write_poly)))
                            f.write(write_poly+','+write_text+'\n')
                f.flush()
            self._logger.info("Ready to submit results from {}".format(file_path))
        else:
            coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
            file_path = os.path.join(self._output_dir, "text_results.json")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(coco_results))
                f.flush()

        self._results = OrderedDict()
        # eval text
        if not self._text_eval_gt_path:
            return copy.deepcopy(self._results)

        temp_dir = "temp_det_results/"
        self.to_eval_format(file_path, temp_dir)
        result_path, result_path_full = self.sort_detection(temp_dir)
        text_result = self.evaluate_with_official_code(result_path, self._text_eval_gt_path) # None 
        text_result["e2e_method"] = "None-" + text_result["e2e_method"]
        dict_lexicon = {"1": "Generic", "2": "Weak", "3": "Strong"}
        text_result_full = self.evaluate_with_official_code(result_path_full, self._text_eval_gt_path) # with lexicon
        text_result_full["e2e_method"] = dict_lexicon[str(self.lexicon_type)] + "-" + text_result_full["e2e_method"]
        os.remove(result_path)
        os.remove(result_path_full)
        # parse
        template = "(\S+): (\S+): (\S+), (\S+): (\S+), (\S+): (\S+)"
        result = text_result["det_only_method"]
        groups = re.match(template, result).groups()
        self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}
        result = text_result["e2e_method"]
        groups = re.match(template, result).groups()
        self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}
        result = text_result_full["e2e_method"]
        groups = re.match(template, result).groups()
        self._results[groups[0]] = {groups[i*2+1]: float(groups[(i+1)*2]) for i in range(3)}

        return copy.deepcopy(self._results)


    def instances_to_coco_json(self, instances, inputs):
        img_id = inputs["image_id"]
        width = inputs['width']
        height = inputs['height']
        num_instances = len(instances)
        if num_instances == 0:
            return []

        scores = instances.scores.tolist()
        pnts = instances.bd.numpy()
        recs = instances.recs.numpy()

        results = []
        for pnt, rec, score in zip(pnts, recs, scores):
            poly = self.pnt_to_polygon(pnt)
            if 'ic15' in self.dataset_name or 'rects' in self.dataset_name:
                poly = polygon2rbox(poly, height, width)
            s = self.ctc_decode(rec)
            result = {
                "image_id": img_id,
                "category_id": 1,
                "polys": poly,
                "rec": s,
                "score": score,
            }
            results.append(result)
        return results

    def pnt_to_polygon(self, ctrl_pnt):
        ctrl_pnt = np.hsplit(ctrl_pnt, 2)
        ctrl_pnt = np.vstack([ctrl_pnt[0], ctrl_pnt[1][::-1]])
        return ctrl_pnt.tolist()

    def ctc_decode(self, rec):
        last_char = '###'
        s = ''
        for c in rec:
            c = int(c)
            if c < self.voc_size - 1:
                if last_char != c:
                    if self.voc_size == 37 or self.voc_size == 96:
                        s += self.CTLABELS[c]
                        last_char = c
                    else:
                        s += str(chr(self.CTLABELS[c]))
                        last_char = c
            else:
                last_char = '###'

        return s
            
def polygon2rbox(polygon, image_height, image_width):
    poly = np.array(polygon).reshape((-1, 2)).astype(np.float32)
    rect = cv2.minAreaRect(poly)
    corners = cv2.boxPoints(rect)
    corners = np.array(corners, dtype="int")
    pts = get_tight_rect(corners, 0, 0, image_height, image_width, 1)
    pts = np.array(pts).reshape(-1,2)
    pts = pts.tolist()
    return pts

def get_tight_rect(points, start_x, start_y, image_height, image_width, scale):
    points = list(points)
    ps = sorted(points, key=lambda x: x[0])

    if ps[1][1] > ps[0][1]:
        px1 = ps[0][0] * scale + start_x
        py1 = ps[0][1] * scale + start_y
        px4 = ps[1][0] * scale + start_x
        py4 = ps[1][1] * scale + start_y
    else:
        px1 = ps[1][0] * scale + start_x
        py1 = ps[1][1] * scale + start_y
        px4 = ps[0][0] * scale + start_x
        py4 = ps[0][1] * scale + start_y
    if ps[3][1] > ps[2][1]:
        px2 = ps[2][0] * scale + start_x
        py2 = ps[2][1] * scale + start_y
        px3 = ps[3][0] * scale + start_x
        py3 = ps[3][1] * scale + start_y
    else:
        px2 = ps[3][0] * scale + start_x
        py2 = ps[3][1] * scale + start_y
        px3 = ps[2][0] * scale + start_x
        py3 = ps[2][1] * scale + start_y

    px1 = min(max(px1, 1), image_width - 1)
    px2 = min(max(px2, 1), image_width - 1)
    px3 = min(max(px3, 1), image_width - 1)
    px4 = min(max(px4, 1), image_width - 1)
    py1 = min(max(py1, 1), image_height - 1)
    py2 = min(max(py2, 1), image_height - 1)
    py3 = min(max(py3, 1), image_height - 1)
    py4 = min(max(py4, 1), image_height - 1)
    return [px1, py1, px2, py2, px3, py3, px4, py4]