README.md 11.3 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# DeepSolo
## 论文

[DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting](https://arxiv.org/abs/2211.10772)

[DeepSolo++: Let Transformer Decoder with Explicit Points Solo for Text Spotting](https://arxiv.org/abs/2305.19957)

## 模型结构

一个简洁的类似DETR的基线,允许一个具有显式点的解码器同时进行检测和识别(图 (c)、(f))。

<div align=center>
    <img src="./doc/image.png"/>
</div>

## 算法原理

DeepSolo中,编码器在接收到图像特征后,生成由四个Bezier控制点表示的Bezier中心曲线候选和相应的分数,然后,选择前K个评分的候选。对于每个选定的曲线候选,在曲线上均匀采样N个点,这些点的坐标被编码为位置query并将其添加到内容query中形成复合query。接下来,将复合query输入deformable cross-attention解码器收集有用的文本特征。在解码器之后,采用了几个简单的并行预测头(线性层或MLP)将query解码为文本的中心线、边界、script和置信度,从而同时解决检测和识别问题。

<div align=center>
    <img src="./doc/DeepSolo.jpg"/>
</div>

## 环境配置

训练需要依赖Detectron2库,编译Detectron2库需要满足 Python ≥ 3.7,PyTorch ≥ 1.8 并且 torchvision 与 PyTorch 版本匹配,gcc & g++ ≥ 5.4。如果想要更快的构建,推荐安装Ninja。

Tips: 如果detectron2安装失败,可尝试以下方式进行安装:

```
git clone https://github.com/facebookresearch/detectron2.git
python -m pip install -e detectron2
```

### Docker(方法一)

-v 路径、docker_name和imageID根据实际情况修改

chenych's avatar
chenych committed
39
```vv
chenych's avatar
chenych committed
40
41
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.13.1-centos7.6-dtk-23.04-py38-latest

42
docker run -it -v /path/your_code_data/:/path/your_code_data/ --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
chenych's avatar
chenych committed
43

chenych's avatar
chenych committed
44
cd /home/deepsolo_pytorch
chenych's avatar
chenych committed
45
pip install --upgrade setuptools wheel
chenych's avatar
chenych committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
pip install -r requirements.txt
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
bash make.sh
```

### Dockerfile(方法二)

-v 路径、docker_name和imageID根据实际情况修改

```
cd ./docker
cp ../requirements.txt requirements.txt

docker build --no-cache -t deepsolo:latest .
docker run -it -v /path/your_code_data/:/path/your_code_data/ --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash

cd /your_code_path/deepsolo_pytorch
chenych's avatar
chenych committed
63
pip install --upgrade setuptools wheel
chenych's avatar
chenych committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
pip install -r requirements.txt
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
bash make.sh
```

### Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

```
DTK软件栈:dtk23.04
python:python3.8
torch:1.13.1
torchvision:0.14.1
```

Tips:以上dtk软件栈、python、torch等DCU相关工具版本需要严格一一对应

2、其他非特殊库直接按照下面步骤进行安装

```
chenych's avatar
chenych committed
85
pip install --upgrade setuptools wheel
chenych's avatar
chenych committed
86
pip install -r requirements.txt
chenych's avatar
chenych committed
87
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
chenych's avatar
chenych committed
88
89
90
91
92
bash make.sh
```

## 数据集

chenych's avatar
chenych committed
93
所有的数据集请保存在 deepsolo_pytorch/datasets 下,因数据集较大,请按训练的需求进行选择下载。训练需求详见configs中yaml的DATASETS字段(测试数据同理)。
chenych's avatar
chenych committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

### 训练数据集
`[SynthText150K (CurvedSynText150K)]` [images](https://github.com/aim-uofa/AdelaiDet/tree/master/datasets) | [annotations(Part1)](https://1drv.ms/u/s!ApEsJ9RIZdBQgQTfQC578sYbkPik?e=2Yz06g) | [annotations(Part2)](https://1drv.ms/u/s!ApEsJ9RIZdBQgQJWqH404p34Wb1m?e=KImg6N)

`[MLT]` [images](https://github.com/aim-uofa/AdelaiDet/tree/master/datasets) | [annotations](https://1drv.ms/u/s!ApEsJ9RIZdBQgQBpvuvV2KBBbN64?e=HVTCab)

`[ICDAR2013]` [images](https://1drv.ms/u/s!ApEsJ9RIZdBQgQcK05sWzK3_t26T?e=5jTWAa) | [annotations](https://1drv.ms/u/s!ApEsJ9RIZdBQfbgqFCeiKOrTM0E?e=UMfIQh)

`[ICDAR2015]` [images](https://1drv.ms/u/s!ApEsJ9RIZdBQgQbupfCNqVxtYGna?e=b4TQY2) | [annotations](https://1drv.ms/u/s!ApEsJ9RIZdBQfhGW5JDiNcDxfWQ?e=PZ2JCX)

`[Total-Text]` [images](https://1drv.ms/u/s!ApEsJ9RIZdBQgQjyPyivo_FnjJ1H?e=qgSFYL) | [annotations](https://1drv.ms/u/s!ApEsJ9RIZdBQgQOShwd8O0K5Dd1f?e=GYyPAX)

`[CTW1500]` [images](https://1drv.ms/u/s!ApEsJ9RIZdBQgQlZVAH5AJld3Y9g?e=zgG71Z) | [annotations](https://1drv.ms/u/s!ApEsJ9RIZdBQfPpyzxoFV34zBg4?e=WK20AN)

`[TextOCR]` [images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) | [annotations](https://1drv.ms/u/s!ApEsJ9RIZdBQgQHY3mjH13GRLPGI?e=Dx1O99)

`[Inverse-Text]` [images](https://1drv.ms/u/s!AimBgYV7JjTlgccVhlbD4I3z5QfmsQ?e=myu7Ue) | [annotations](https://1drv.ms/u/s!ApEsJ9RIZdBQf3G4vZpf4QD5NKo?e=xR3GtY)

`[SynChinese130K]` [images](https://github.com/aim-uofa/AdelaiDet/tree/master/datasets) | [annotations](https://1drv.ms/u/s!AimBgYV7JjTlgch5W0n1Iv397i0csw?e=Gq8qww)

`[ArT]` [images](https://github.com/aim-uofa/AdelaiDet/tree/master/datasets) | [annotations](https://1drv.ms/u/s!AimBgYV7JjTlgch45d0VHNCoPC1jfQ?e=likK00)

`[LSVT]` [images](https://github.com/aim-uofa/AdelaiDet/tree/master/datasets) | [annotations](https://1drv.ms/u/s!AimBgYV7JjTlgch7yjmrCSN0TgoO4w?e=NKd5OG)

`[ReCTS]` [images](https://github.com/aim-uofa/AdelaiDet/tree/master/datasets) | [annotations](https://1drv.ms/u/s!AimBgYV7JjTlgch_xZ8otxFWfNgZSg?e=pdq28B)

`[Evaluation ground-truth]` [Link](https://1drv.ms/u/s!ApEsJ9RIZdBQem-MG1TjuRWApyA?e=fVPnmT)


### 验证数据集

```
cd datasets
mkdir evaluation
cd evaluation

wget -O gt_ctw1500.zip https://cloudstor.aarnet.edu.au/plus/s/xU3yeM3GnidiSTr/download
wget -O gt_totaltext.zip https://cloudstor.aarnet.edu.au/plus/s/SFHvin8BLUM4cNd/download
wget -O gt_icdar2015.zip https://drive.google.com/file/d/1wrq_-qIyb_8dhYVlDzLZTTajQzbic82Z/view?usp=sharing
wget -O gt_inversetext.zip https://cloudstor.aarnet.edu.au/plus/s/xU3yeM3GnidiSTr/download
```

### 数据集目录结构

用于正常训练的数据集请按此目录结构进行:

```
├── ./datasets
│   ├── simple
│       ├── test_images
│       ├── train_images
│       ├── test.json
│       └── train.json
│   ├── evaluation
│       ├── gt_totaltext.zip
│       ├── gt_ctw1500.zip
│       ├── gt_icdar2015.zip
│       └── gt_inversetext.zip
│   ├── syntext1
│       ├── train_images
│       └── annotations
│           ├── train_37voc.json
│           └── train_96voc.json
│   ├── syntext2
│       ├── train_images
│       └── annotations
│           ├── train_37voc.json
│           └── train_96voc.json
│   ├── mlt2017
│       ├── train_images
│       ├── train_37voc.json
│       └── train_96voc.json
│   ├── totaltext
│       ├── train_images
│       ├── test_images
│       ├── weak_voc_new.txt
│       ├── weak_voc_pair_list.txt
│       ├── train_37voc.json
│       ├── train_96voc.json
│       └── test.json
│   ├── ic13
│       ├── train_images
│       ├── train_37voc.json
│       └── train_96voc.json
│   ├── ic15
│       ├── train_images
│       ├── test_images
│       ├── new_strong_lexicon
│       ├── strong_lexicon
│       ├── ch4_test_vocabulary.txt
│       ├── ch4_test_vocabulary_new.txt
│       ├── ch4_test_vocabulary_pair_list.txt
│       ├── GenericVocabulary.txt
│       ├── GenericVocabulary_new.txt
│       ├── GenericVocabulary_pair_list.txt
│       ├── train_37voc.json
│       ├── train_96voc.json
│       └── test.json
│   ├── ctw1500
│       ├── train_images
│       ├── test_images
│       ├── weak_voc_new.txt
│       ├── weak_voc_pair_list.txt
│       ├── train_96voc.json
│       └── test.json
│   ├── textocr
│       ├── train_images
│       ├── train_37voc_1.json
│       └── train_37voc_2.json
│   ├── inversetext
│       ├── test_images
│       └── test.json
│   ├── chnsyntext
│       ├── syn_130k_images
│       └── chn_syntext.json
│   ├── ArT
│       ├── rename_artimg_train
│       └── art_train.json
│   ├── LSVT
│       ├── rename_lsvtimg_train
│       └── lsvt_train.json
│   ├── ReCTS
│       ├── ReCTS_train_images  # 18,000 images
│       ├── ReCTS_val_images  # 2,000 images
│       ├── ReCTS_test_images  # 5,000 images
│       ├── rects_train.json
│       ├── rects_val.json
│       └── rects_test.json
```

如果使用自己的数据集,请将数据标注转换成COCO的格式,并在DeepSolo/adet/data/builtin.py代码第18行 _PREDEFINED_SPLITS_TEXT 参数中,参照结构补充自己的数据集。

项目同样提供了迷你数据集simple进行学习。

## 训练

### 单机多卡

Tips: 以下参数请根据实际情况自行修改 train.sh 中的参数设定

--config-file yaml文件配置地址

--num-gpus 训练卡数量

修改后执行:

```
bash train.sh
```

## 推理

Tips:
chenych's avatar
chenych committed
247
248
249
测试有两种展示,一种 visualization show, 测试完成后会在 --output 路径下生成测试图片结果;
第二种是 eval show, 测试完成后会展示测试结果数据, 没有测试图片结果展示。

chenych's avatar
chenych committed
250
251
需要修改的主要参数说明如下:

chenych's avatar
chenych committed
252
${CONFIG_FILE} yaml文件配置地址(注意修改预训练模型地址)
chenych's avatar
chenych committed
253

chenych's avatar
chenych committed
254
${IMAGE_PATH} 待测试数据地址
chenych's avatar
chenych committed
255

chenych's avatar
chenych committed
256
257
${MODEL_PATH} 待测试预训练模型地址

chenych's avatar
chenych committed
258
如需执行自己的预训练模型,请修改对应配置(visualization show 的模型地址修改在yaml文件中, eval show 的模型地址修改为 ${MODEL_PATH}参数输入), 具体配置可参考test.sh中提供的样例。
chenych's avatar
chenych committed
259

chenych's avatar
chenych committed
260
以 visualization show 为, 执行步骤如下:
chenych's avatar
chenych committed
261

chenych's avatar
chenych committed
262
1. 下载CTW1500的预训练模型 pretrain_ctw_96voc.pth:
chenych's avatar
chenych committed
263
264
265
266
267

|Backbone|Training Data|Weights|
|:------:|:------:|:------:|
|Res-50|Synth150K+Total-Text+MLT17+IC13+IC15|[OneDrive](https://1drv.ms/u/s!AimBgYV7JjTlgcdtYzwEBGvOH6CiBw?e=trgKFE)|

chenych's avatar
chenych committed
268
将预训练模型放在 pretrained_models/CTW1500/ 文件夹下,如果放置于其他地方,请同步修改yaml配置文件中 MODEL.WEIGHTS 地址。
chenych's avatar
chenych committed
269
270
271
272
273
274
275

2. 将待测试数据存放于 ${IMAGE_PATH} 下,执行

```
bash test.sh
```

chenych's avatar
chenych committed
276
3. 推理结果默认保存在test_results文件夹下,可以使用参数 --output 替换结果保存路径。
chenych's avatar
chenych committed
277
278
279
280
281
282
283
284
285
286
287
288
289

## result

CTW1500上的结果展示

<div align=center>
    <img src="./doc/results.jpg"/>
</div>

### 精度

基于backbone=R50在ctw1500上的测试结果如下表所示:

chenych's avatar
chenych committed
290
|Backbone|External Data|Det-P|Det-R|Det-F1|E2E-None|E2E-Generic|
chenych's avatar
chenych committed
291
|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
chenych's avatar
chenych committed
292
293
|Res-50(ours)|Synth150K+Total-Text+MLT17+IC13+IC15|0.9320|0.8363|0.8816|0.6783|0.9349|
|Res-50|Synth150K+Total-Text+MLT17+IC13+IC15|0.9329|0.8478|0.8883|0.6742|0.9373|
chenych's avatar
chenych committed
294
295
296
297
298

## 应用场景
### 算法类别
OCR

chenych's avatar
chenych committed
299
### 热点应用行业v
chenych's avatar
chenych committed
300
301
302
303
304
305
306
政府,交通,物流

## 源码仓库及问题反馈
http://developer.hpccube.com/codes/modelzoo/deepsolo_pytorch.git

## 参考资料
https://github.com/ViTAE-Transformer/DeepSolo.git