text_completion.py 1.19 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

# model_name_or_path = "deepseek-ai/DeepSeek-V2-Lite"
model_name_or_path = "/home/DeepSeek-V2/DeepSeek-V2-Lite-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)

# `max_memory` should be set based on your devices
max_memory = {i: "64GB" for i in range(8)}

# `device_map` cannot be set to `auto`
model = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        trust_remote_code=True,
        device_map="sequential",
        torch_dtype=torch.bfloat16,
        max_memory=max_memory,
        attn_implementation="eager")

model.generation_config = GenerationConfig.from_pretrained(model_name_or_path)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("result", result)