kernel.py 5.16 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from typing import Tuple

import torch
import triton
import triton.language as tl
from triton import Config


@triton.jit
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
    pid = tl.program_id(axis=0)
    offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    x = tl.load(x_ptr + offs).to(tl.float32)
    s = tl.max(tl.abs(x)) / 448.
    y = x / s
    y = y.to(y_ptr.dtype.element_ty)
    tl.store(y_ptr + offs, y)
    tl.store(s_ptr + pid, s)


def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.is_contiguous()
    assert x.size(-1) % block_size == 0
    y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
    s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32)
    grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), )
    act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size)
    return y, s


# @triton.jit
# def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
#     pid_m = tl.program_id(axis=0)
#     pid_n = tl.program_id(axis=1)
#     n = tl.cdiv(N, BLOCK_SIZE)
#     offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
#     offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
#     offs = offs_m[:, None] * N + offs_n[None, :]
#     mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
#     x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
#     s = tl.load(s_ptr + pid_m * n + pid_n)
#     y = x * s
#     tl.store(y_ptr + offs, y, mask=mask)


# def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
#     assert x.is_contiguous() and s.is_contiguous()
#     assert x.dim() == 2 and s.dim() == 2
#     M, N = x.size()
#     y = torch.empty_like(x, dtype=torch.get_default_dtype())
#     grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
#     weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)
#     return y


def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
    assert x.is_contiguous() and s.is_contiguous()
    assert x.dim() == 2 and s.dim() == 2
    M, N = x.size()
    y = torch.empty_like(x, dtype=torch.get_default_dtype())

    # 计算 s 的目标形状
    s_M = (M + block_size - 1) // block_size  # 向上取整
    s_N = (N + block_size - 1) // block_size  # 向上取整

    # 检查 s 的形状是否正确
    assert s.size(0) == s_M and s.size(1) == s_N, \
        f"s 的形状应为 ({s_M}, {s_N}), 但实际为 {s.size()}"

    # 将 s 扩展到与 x 相同的形状
    s_expanded = s.repeat_interleave(block_size, dim=0).repeat_interleave(block_size, dim=1)

    # 裁剪 s_expanded 以匹配 x 的形状
    s_expanded = s_expanded[:M, :N]

    # 逐元素乘法
    y = x.to(torch.float32) * s_expanded
    
    y = y.to(torch.bfloat16)

    return y


fp8_gemm_configs = [
    Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
    for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
]

@triton.autotune(configs=fp8_gemm_configs, key=['N', 'K'])
@triton.jit
def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
                    a_s_ptr, b_s_ptr,
                    M, N: tl.constexpr, K: tl.constexpr,
                    BLOCK_SIZE_M: tl.constexpr,
                    BLOCK_SIZE_N: tl.constexpr,
                    BLOCK_SIZE_K: tl.constexpr):
    pid_m = tl.program_id(axis=0)
    pid_n = tl.program_id(axis=1)
    k = tl.cdiv(K, BLOCK_SIZE_K)
    offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
    offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :]
    b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None]
    a_s_ptrs = a_s_ptr + offs_m * k
    b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k

    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(k):
        a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0)
        b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0)
        a_s = tl.load(a_s_ptrs)
        b_s = tl.load(b_s_ptrs)
        accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
        a_ptrs += BLOCK_SIZE_K
        b_ptrs += BLOCK_SIZE_K
        a_s_ptrs += 1
        b_s_ptrs += 1
    c = accumulator.to(c_ptr.dtype.element_ty)
    offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :]
    mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
    tl.store(c_ptrs, c, mask=mask)


def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
    assert a.is_contiguous() and b.is_contiguous()
    assert a_s.is_contiguous() and b_s.is_contiguous()
    K = a.size(-1)
    M = a.numel() // K
    N = b.size(0)
    c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
    grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N']))
    fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K)
    return c