run_dpsk_ocr_pdf.py 9.26 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
import os
import fitz
import img2pdf
import io
import re
chenych's avatar
chenych committed
6
import numpy as np
chenych's avatar
chenych committed
7

chenych's avatar
chenych committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor
from config import MODEL_PATH, INPUT_PATH, OUTPUT_PATH, PROMPT, SKIP_REPEAT, MAX_CONCURRENCY, NUM_WORKERS, CROP_MODE
from PIL import Image, ImageDraw, ImageFont
from deepseek_ocr import DeepseekOCRForCausalLM
from vllm.model_executor.models.registry import ModelRegistry
from vllm import LLM, SamplingParams
from process.ngram_norepeat import NoRepeatNGramLogitsProcessor
from process.image_process import DeepseekOCRProcessor

ModelRegistry.register_model("DeepseekOCRForCausalLM", DeepseekOCRForCausalLM)

llm = LLM(
    model=MODEL_PATH,
    hf_overrides={"architectures": ["DeepseekOCRForCausalLM"]},
chenych's avatar
chenych committed
23
    block_size=64,
chenych's avatar
chenych committed
24
    enforce_eager=False,
chenych's avatar
chenych committed
25
    trust_remote_code=True,
chenych's avatar
chenych committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    max_model_len=8192,
    swap_space=0,
    max_num_seqs=MAX_CONCURRENCY,
    tensor_parallel_size=1,
    gpu_memory_utilization=0.9,
    disable_mm_preprocessor_cache=True
)

logits_processors = [NoRepeatNGramLogitsProcessor(ngram_size=20, window_size=50, whitelist_token_ids= {128821, 128822})] #window for fast;whitelist_token_ids: <td>,</td>

sampling_params = SamplingParams(
    temperature=0.0,
    max_tokens=8192,
    logits_processors=logits_processors,
    skip_special_tokens=False,
    include_stop_str_in_output=True,
)


class Colors:
    RED = '\033[31m'
    GREEN = '\033[32m'
    YELLOW = '\033[33m'
    BLUE = '\033[34m'
chenych's avatar
chenych committed
50
    RESET = '\033[0m'
chenych's avatar
chenych committed
51
52
53
54
55
56

def pdf_to_images_high_quality(pdf_path, dpi=144, image_format="PNG"):
    """
    pdf2images
    """
    images = []
chenych's avatar
chenych committed
57

chenych's avatar
chenych committed
58
    pdf_document = fitz.open(pdf_path)
chenych's avatar
chenych committed
59

chenych's avatar
chenych committed
60
61
    zoom = dpi / 72.0
    matrix = fitz.Matrix(zoom, zoom)
chenych's avatar
chenych committed
62

chenych's avatar
chenych committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    for page_num in range(pdf_document.page_count):
        page = pdf_document[page_num]

        pixmap = page.get_pixmap(matrix=matrix, alpha=False)
        Image.MAX_IMAGE_PIXELS = None

        if image_format.upper() == "PNG":
            img_data = pixmap.tobytes("png")
            img = Image.open(io.BytesIO(img_data))
        else:
            img_data = pixmap.tobytes("png")
            img = Image.open(io.BytesIO(img_data))
            if img.mode in ('RGBA', 'LA'):
                background = Image.new('RGB', img.size, (255, 255, 255))
                background.paste(img, mask=img.split()[-1] if img.mode == 'RGBA' else None)
                img = background
chenych's avatar
chenych committed
79

chenych's avatar
chenych committed
80
        images.append(img)
chenych's avatar
chenych committed
81

chenych's avatar
chenych committed
82
83
84
85
86
87
    pdf_document.close()
    return images

def pil_to_pdf_img2pdf(pil_images, output_path):
    if not pil_images:
        return
chenych's avatar
chenych committed
88

chenych's avatar
chenych committed
89
    image_bytes_list = []
chenych's avatar
chenych committed
90

chenych's avatar
chenych committed
91
92
93
    for img in pil_images:
        if img.mode != 'RGB':
            img = img.convert('RGB')
chenych's avatar
chenych committed
94

chenych's avatar
chenych committed
95
96
97
98
        img_buffer = io.BytesIO()
        img.save(img_buffer, format='JPEG', quality=95)
        img_bytes = img_buffer.getvalue()
        image_bytes_list.append(img_bytes)
chenych's avatar
chenych committed
99

chenych's avatar
chenych committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    try:
        pdf_bytes = img2pdf.convert(image_bytes_list)
        with open(output_path, "wb") as f:
            f.write(pdf_bytes)

    except Exception as e:
        print(f"error: {e}")

def re_match(text):
    pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
    matches = re.findall(pattern, text, re.DOTALL)

    mathes_image = []
    mathes_other = []
    for a_match in matches:
        if '<|ref|>image<|/ref|>' in a_match[0]:
            mathes_image.append(a_match[0])
        else:
            mathes_other.append(a_match[0])
    return matches, mathes_image, mathes_other

def extract_coordinates_and_label(ref_text, image_width, image_height):
    try:
        label_type = ref_text[1]
        cor_list = eval(ref_text[2])
    except Exception as e:
        print(e)
        return None

    return (label_type, cor_list)

def draw_bounding_boxes(image, refs, jdx):

    image_width, image_height = image.size
    img_draw = image.copy()
    draw = ImageDraw.Draw(img_draw)

    overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
    draw2 = ImageDraw.Draw(overlay)
chenych's avatar
chenych committed
139

chenych's avatar
chenych committed
140
141
142
143
    #     except IOError:
    font = ImageFont.load_default()

    img_idx = 0
chenych's avatar
chenych committed
144

chenych's avatar
chenych committed
145
146
147
148
149
    for i, ref in enumerate(refs):
        try:
            result = extract_coordinates_and_label(ref, image_width, image_height)
            if result:
                label_type, points_list = result
chenych's avatar
chenych committed
150

chenych's avatar
chenych committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                color = (np.random.randint(0, 200), np.random.randint(0, 200), np.random.randint(0, 255))

                color_a = color + (20, )
                for points in points_list:
                    x1, y1, x2, y2 = points

                    x1 = int(x1 / 999 * image_width)
                    y1 = int(y1 / 999 * image_height)

                    x2 = int(x2 / 999 * image_width)
                    y2 = int(y2 / 999 * image_height)

                    if label_type == 'image':
                        try:
                            cropped = image.crop((x1, y1, x2, y2))
                            cropped.save(f"{OUTPUT_PATH}/images/{jdx}_{img_idx}.jpg")
                        except Exception as e:
                            print(e)
                            pass
                        img_idx += 1
chenych's avatar
chenych committed
171

chenych's avatar
chenych committed
172
173
174
175
176
177
178
179
180
181
                    try:
                        if label_type == 'title':
                            draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
                            draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)
                        else:
                            draw.rectangle([x1, y1, x2, y2], outline=color, width=2)
                            draw2.rectangle([x1, y1, x2, y2], fill=color_a, outline=(0, 0, 0, 0), width=1)

                        text_x = x1
                        text_y = max(0, y1 - 15)
chenych's avatar
chenych committed
182

chenych's avatar
chenych committed
183
184
185
                        text_bbox = draw.textbbox((0, 0), label_type, font=font)
                        text_width = text_bbox[2] - text_bbox[0]
                        text_height = text_bbox[3] - text_bbox[1]
chenych's avatar
chenych committed
186
                        draw.rectangle([text_x, text_y, text_x + text_width, text_y + text_height],
chenych's avatar
chenych committed
187
                                    fill=(255, 255, 255, 30))
chenych's avatar
chenych committed
188

chenych's avatar
chenych committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                        draw.text((text_x, text_y), label_type, font=font, fill=color)
                    except:
                        pass
        except:
            continue
    img_draw.paste(overlay, (0, 0), overlay)
    return img_draw

def process_image_with_refs(image, ref_texts, jdx):
    result_image = draw_bounding_boxes(image, ref_texts, jdx)
    return result_image

def process_single_image(image):
    """single image"""
    prompt_in = prompt
    cache_item = {
        "prompt": prompt_in,
        "multi_modal_data": {"image": DeepseekOCRProcessor().tokenize_with_images(images = [image], bos=True, eos=True, cropping=CROP_MODE)},
    }
    return cache_item


if __name__ == "__main__":

    os.makedirs(OUTPUT_PATH, exist_ok=True)
    os.makedirs(f'{OUTPUT_PATH}/images', exist_ok=True)
chenych's avatar
chenych committed
215

chenych's avatar
chenych committed
216
217
218
219
220
221
222
    print(f'{Colors.RED}PDF loading .....{Colors.RESET}')

    images = pdf_to_images_high_quality(INPUT_PATH)
    prompt = PROMPT

    # batch_inputs = []

chenych's avatar
chenych committed
223
    with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
chenych's avatar
chenych committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        batch_inputs = list(tqdm(
            executor.map(process_single_image, images),
            total=len(images),
            desc="Pre-processed images"
        ))

    # for image in tqdm(images):

    #     prompt_in = prompt
    #     cache_list = [
    #         {
    #             "prompt": prompt_in,
    #             "multi_modal_data": {"image": DeepseekOCRProcessor().tokenize_with_images(images = [image], bos=True, eos=True, cropping=CROP_MODE)},
    #         }
    #     ]
    #     batch_inputs.extend(cache_list)


    outputs_list = llm.generate(
        batch_inputs,
        sampling_params=sampling_params
    )

    output_path = OUTPUT_PATH

    os.makedirs(output_path, exist_ok=True)

    mmd_det_path = output_path + '/' + INPUT_PATH.split('/')[-1].replace('.pdf', '_det.mmd')
    mmd_path = output_path + '/' + INPUT_PATH.split('/')[-1].replace('pdf', 'mmd')
    pdf_out_path = output_path + '/' + INPUT_PATH.split('/')[-1].replace('.pdf', '_layouts.pdf')
    contents_det = ''
    contents = ''
    draw_images = []
    jdx = 0
    for output, img in zip(outputs_list, images):
        content = output.outputs[0].text

        if '<|end▁of▁sentence|>' in content: # repeat no eos
            content = content.replace('<|end▁of▁sentence|>', '')
        else:
            if SKIP_REPEAT:
                continue

        page_num = f'\n<--- Page Split --->'

        contents_det += content + f'\n{page_num}\n'

        image_draw = img.copy()

        matches_ref, matches_images, mathes_other = re_match(content)
        # print(matches_ref)
        result_image = process_image_with_refs(image_draw, matches_ref, jdx)


        draw_images.append(result_image)


        for idx, a_match_image in enumerate(matches_images):
            content = content.replace(a_match_image, f'![](images/' + str(jdx) + '_' + str(idx) + '.jpg)\n')

        for idx, a_match_other in enumerate(mathes_other):
            content = content.replace(a_match_other, '').replace('\\coloneqq', ':=').replace('\\eqqcolon', '=:').replace('\n\n\n\n', '\n\n').replace('\n\n\n', '\n\n')


        contents += content + f'\n{page_num}\n'


        jdx += 1

    with open(mmd_det_path, 'w', encoding='utf-8') as afile:
        afile.write(contents_det)

    with open(mmd_path, 'w', encoding='utf-8') as afile:
        afile.write(contents)


    pil_to_pdf_img2pdf(draw_images, pdf_out_path)