You need to sign in or sign up before continuing.
Commit 5c14fb01 authored by chenych's avatar chenych
Browse files

Add deepseek-ocr-2

parents
Pipeline #3285 failed with stages
in 0 seconds
from transformers import AutoModel, AutoTokenizer
import torch
import os
import argparse
parse = argparse.ArgumentParser()
parse.add_argument('--model_name_or_path', type=str, default='deepseek-ai/DeepSeek-OCR-2')
parse.add_argument('--image_file', type=str, default='doc/docstructbench_dianzishu_zhongwenzaixian-o.O-63686436.pdf_57.jpg')
parse.add_argument('--output_path', type=str, default='output/image')
args = parse.parse_args()
if __name__ == '__main__':
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(args.model_name_or_path, _attn_implementation='flash_attention_2', trust_remote_code=True, use_safetensors=True)
model = model.eval().cuda().to(torch.bfloat16)
# prompt = "<image>\nFree OCR. "
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
res = model.infer(tokenizer, prompt=prompt, image_file=args.image_file, output_path =args.output_path, base_size = 1024, image_size = 768, crop_mode=True, save_results = True)
print("process end, result saved to ", args.output_path)
\ No newline at end of file
BASE_SIZE = 1024
IMAGE_SIZE = 768
CROP_MODE = True
MIN_CROPS= 2
MAX_CROPS= 6 # max:6
MAX_CONCURRENCY = 100 # If you have limited GPU memory, lower the concurrency count.
NUM_WORKERS = 64 # image pre-process (resize/padding) workers
PRINT_NUM_VIS_TOKENS = False
SKIP_REPEAT = True
MODEL_PATH = 'deepseek-ai/DeepSeek-OCR-2' # change to your model path
# TODO: change INPUT_PATH
# .pdf: run_dpsk_ocr_pdf.py;
# .jpg, .png, .jpeg: run_dpsk_ocr_image.py;
# Omnidocbench images path: run_dpsk_ocr_eval_batch.py
INPUT_PATH = 'doc/docstructbench_dianzishu_zhongwenzaixian-o.O-63686436.pdf_57.jpg'
OUTPUT_PATH = 'output/image/'
PROMPT = '<image>\n<|grounding|>Convert the document to markdown.'
# PROMPT = '<image>\nFree OCR.'
# PROMPT = '<image>\nParse the figure.'
# TODO commonly used prompts
# document: <image>\n<|grounding|>Convert the document to markdown.
# other image: <image>\n<|grounding|>OCR this image.
# without layouts: <image>\nFree OCR.
# figures in document: <image>\nParse the figure.
# general: <image>\nDescribe this image in detail.
# rec: <image>\nLocate <|ref|>xxxx<|/ref|> in the image.
# .......
from transformers import AutoTokenizer
TOKENIZER = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
\ No newline at end of file
import torch.nn as nn
import torch
import torch.nn.functional as F
import copy
class MlpProjector(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
if cfg.projector_type == "identity":
modules = nn.Identity()
elif cfg.projector_type == "linear":
modules = nn.Linear(cfg.input_dim, cfg.n_embed)
elif cfg.projector_type == "mlp_gelu":
mlp_depth = cfg.get("depth", 1)
modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
modules = nn.Sequential(*modules)
elif cfg.projector_type == "normlayer_downsample_mlp_gelu":
mlp_depth = cfg.get("depth", 1)
mlp_ratio = cfg.get("mlp_ratio", 1)
modules = [
nn.LayerNorm(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio),
nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)
]
for _ in range(1, mlp_depth - 1):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
modules = nn.Sequential(*modules)
elif cfg.projector_type == "downsample_mlp_gelu":
mlp_depth = cfg.get("depth", 1)
mlp_ratio = cfg.get("mlp_ratio", 1)
modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
for _ in range(1, mlp_depth - 1):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
modules = nn.Sequential(*modules)
elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
mlp_depth = cfg.get("depth", 1)
self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
modules = []
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
modules = nn.Sequential(*modules)
elif cfg.projector_type == "hybrid_split_feature_mlp_gelu":
mlp_depth = cfg.get("depth", 1)
channel_div = cfg.get("channel_div", 0.5)
self.high_up_proj = nn.Linear(cfg.input_dim[0], int(cfg.n_embed * channel_div))
self.low_up_proj = nn.Linear(cfg.input_dim[1], cfg.n_embed - int(cfg.n_embed * channel_div))
modules = []
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
modules = nn.Sequential(*modules)
elif cfg.projector_type == "low_high_split_mlp_gelu":
mlp_depth = cfg.get("depth", 1)
modules = []
for _ in range(1, mlp_depth):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed // 2, cfg.n_embed // 2))
modules = nn.Sequential(*modules)
self.high_layers = nn.Sequential(*modules)
self.low_layers = copy.deepcopy(modules)
else:
raise ValueError(f"Unknown projector type: {cfg.projector_type}")
if cfg.get("token_pooling", False):
self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
if cfg.get("conv_fusion_high_low_features", False):
self.fusion_layer = nn.Linear(cfg.input_dim, cfg.input_dim)
self.layers = modules
def forward(self, x):
if self.cfg.get("token_pooling", False):
batch_size, wxh, channels = x.shape
w = h = int(wxh**0.5)
x = x.view(batch_size, w, h, channels)
x = x.permute(0, 3, 1, 2)
# import ipdb; ipdb.set_trace()
patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
batch_size, channels, h_patches, w_patches, _, _ = patches.size()
# 在通道维度上拼接
patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
# 通过线性层
patches = patches.permute(0, 2, 1, 3).contiguous()
patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
x = self.token_pooling_layer(patches)
if self.cfg.get("conv_fusion_high_low_features", False):
x = self.fusion_layer(x[:, 0]) + x[:, 1]
if self.cfg.projector_type == 'low_high_hybrid_split_mlp_gelu':
high_x, low_x = x[0], x[1]
high_x = self.high_up_proj(high_x)
low_x = self.low_up_proj(low_x)
x = torch.concat([high_x, low_x], dim=-1)
if self.cfg.projector_type == 'hybrid_split_feature_mlp_gelu':
high_x = x[...,:self.cfg.input_dim[0]]
low_x = x[...,self.cfg.input_dim[0]:]
high_x = self.high_up_proj(high_x)
low_x = self.low_up_proj(low_x)
x = torch.concat([high_x, low_x], dim=-1)
if self.cfg.projector_type == 'low_high_split_mlp_gelu':
high_x, low_x = x[0], x[1]
high_x = self.high_layers(high_x)
low_x = self.low_layers(low_x)
x = torch.concat([high_x, low_x], dim=-1)
return x
if self.cfg.projector_type == 'downsample_mlp_gelu' or self.cfg.projector_type == 'normlayer_downsample_mlp_gelu':
bs, hw, input_dim = x.shape
h = w = int((hw) ** 0.5)
"""compute padding"""
if h % self.cfg.downsample_ratio:
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
else:
pad = 0
x = x.reshape(bs, h, w, input_dim)
if pad > 0:
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
"""4 to 1 concat"""
x = x.permute(0, 3, 1, 2) # B, C, H, W
x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio, padding=0) # B, C*4, HW // 4
x = x.permute(0, 2, 1)
return self.layers(x)
@staticmethod
def get_flops_per_sample(cfg):
if cfg.projector_type == "linear":
fwd = 2 * cfg.input_dim * cfg.n_embed
elif "mlp_gelu" in cfg.projector_type :
mlp_depth = cfg.get("depth", 1)
downsample_ratio = cfg.get("downsample_ratio", 1)
input_dim = sum(cfg.input_dim) if isinstance(cfg.input_dim, list) else cfg.input_dim
input_dim = input_dim * downsample_ratio * downsample_ratio
fwd = 2 * input_dim * cfg.n_embed + (mlp_depth - 1) * 2 * cfg.n_embed * cfg.n_embed
else:
fwd = 0
return fwd * 3
import torch
import torch.nn as nn
import transformers
class CustomQwen2Decoder(nn.Module):
"""
Qwen2 visual encoder
non-causal attention + causal attention
token_type_ids :0=non-causal, 1=causal
"""
def __init__(
self,
decoder_layer: int = 24,
max_position_embeddings: int = 131072,
hidden_dimension: int = 896,
num_attention_heads: int = 14,
num_key_value_heads: int = 2,
intermediate_size: int = 4864,
vocab_size: int = 151936,
attn_implementation: str = "sdpa", # ⭐
rms_norm_eps: float = 1e-06,
rope_theta: float = 1000000.0,
attention_dropout: float = 0.0,
hidden_act: str = "silu",
initializer_range: float = 0.02,
):
super().__init__()
# attn_implementation check
if attn_implementation == "flash_attention_2":
raise ValueError(
"CustomQwen2Decoder do not support flash_attention_2,"
"new attention mask needs 'sdpa' or 'eager'"
)
# load
Qwen2Model = getattr(transformers.models.qwen2.modeling_qwen2, 'Qwen2Model')
Qwen2Config = getattr(transformers, 'Qwen2Config')
# config
config = Qwen2Config(
hidden_size=hidden_dimension,
num_hidden_layers=decoder_layer,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
intermediate_size=intermediate_size,
max_position_embeddings=max_position_embeddings,
vocab_size=vocab_size,
rms_norm_eps=rms_norm_eps,
rope_theta=rope_theta,
attention_dropout=attention_dropout,
hidden_act=hidden_act,
initializer_range=initializer_range,
_attn_implementation=attn_implementation, # ⭐
)
#
self.model = self._create_custom_model(Qwen2Model, config)
del self.model.embed_tokens
def _create_custom_model(self, Qwen2Model, config):
""" Qwen2Model """
class CustomQwen2ModelInner(Qwen2Model):
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
token_type_ids=None, # ⭐
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
):
# token_type_ids
self._current_token_type_ids = token_type_ids
outputs = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
return outputs
def _update_causal_mask(
self,
attention_mask,
input_tensor,
cache_position,
past_key_values,
output_attentions,
):
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
batch_size, sequence_length = input_tensor.shape[0], input_tensor.shape[1]
token_type_ids = self._current_token_type_ids
# attention mask
causal_mask = self._create_custom_4d_mask(
sequence_length=sequence_length,
dtype=dtype,
device=device,
batch_size=batch_size,
token_type_ids=token_type_ids,
)
# padding mask
if attention_mask is not None and attention_mask.dim() == 2:
padding_mask = attention_mask[:, None, None, :].to(dtype=dtype)
padding_mask = (1.0 - padding_mask) * min_dtype
causal_mask = causal_mask + padding_mask
return causal_mask
def _create_custom_4d_mask(
self,
sequence_length,
dtype,
device,
batch_size,
token_type_ids,
):
min_dtype = torch.finfo(dtype).min
masks = []
for b in range(batch_size):
mask = torch.full(
(sequence_length, sequence_length),
fill_value=min_dtype,
dtype=dtype,
device=device
)
type_ids = token_type_ids[b]
image_positions = (type_ids == 0).nonzero(as_tuple=True)[0]
text_positions = (type_ids == 1).nonzero(as_tuple=True)[0]
# non-casual
if len(image_positions) > 0:
mask[image_positions[:, None], image_positions] = 0.0
# causal
for i, text_pos in enumerate(text_positions):
if len(image_positions) > 0:
mask[text_pos, image_positions] = 0.0
mask[text_pos, text_positions[:i+1]] = 0.0
masks.append(mask)
mask = torch.stack(masks, dim=0).unsqueeze(1)
return mask
return CustomQwen2ModelInner(config)
def forward(
self,
inputs_embeds,
token_type_ids,
attention_mask=None,
**kwargs
):
"""
Args:
inputs_embeds: [batch_size, seq_len, hidden_dim]
token_type_ids: [batch_size, seq_len], 0=non-causal, 1=causal
attention_mask: [batch_size, seq_len], optional
"""
return self.model(
inputs_embeds=inputs_embeds,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
**kwargs
)
# batch_size = 2
# inputs_embeds = torch.randn(batch_size, 512, 896).cuda()
# inputs_embeds = torch.randn(batch_size, 512, 896).cuda()
# token_type_ids = torch.cat([
# torch.zeros(batch_size, 256, dtype=torch.long),
# torch.ones(batch_size, 256, dtype=torch.long),
# ], dim=1).cuda()
# # start = time.time()
# with torch.no_grad():
# outputs_sdpa = decoder_sdpa(inputs_embeds, token_type_ids)
# print(outputs_sdpa[0].shape)
# print(f"SDPA time: {time.time() - start:.4f}s")
class Qwen2Decoder2Encoder(nn.Module):
"""
Decoder based on Multilingual BART
Set the initial weights and configuration with a pretrained multilingual BART model,
and modify the detailed configurations as a Nougat decoder
"""
def __init__(
self,
decoder_layer: int,
hidden_dimension: int,
num_attention_heads: int,
num_key_value_heads: int,
intermediate_size: int,
max_query: int,
):
super().__init__()
self.model = CustomQwen2Decoder(
decoder_layer=decoder_layer,
hidden_dimension=hidden_dimension,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
intermediate_size=intermediate_size,
attn_implementation="sdpa",
)
self.query_768 = nn.Embedding(144, hidden_dimension)
self.query_1024 = nn.Embedding(256, hidden_dimension)
# self.query_refixation = nn.Embedding(int(math.sqrt(max_query)), hidden_dimension)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.flatten(2).transpose(1, 2)
bs, n_query, _ = x.shape
if n_query == 144:
param_img = self.query_768.weight
elif n_query == 256:
param_img = self.query_1024.weight
batch_query_imgs = param_img.unsqueeze(0).expand(
bs, -1, -1
) # (batch_size, num_queries, hidden_size)
x_combined = torch.cat([x, batch_query_imgs], dim=1)
token_type_ids = torch.cat([
torch.zeros(bs, n_query, dtype=torch.long),
torch.ones(bs, n_query, dtype=torch.long),
], dim=1)
y = self.model(x_combined, token_type_ids)[0]
y = y[:, n_query:, :] # causal flow query
return y
def build_qwen2_decoder_as_encoder(
decoder_layer=24,
hidden_dimension=896,
num_attention_heads=14,
num_key_value_heads=2,
intermediate_size=4864,
max_query = 400,
checkpoint=None,
):
decoder_as_encoder = Qwen2Decoder2Encoder(
decoder_layer=decoder_layer,
hidden_dimension = hidden_dimension,
num_attention_heads = num_attention_heads,
num_key_value_heads = num_key_value_heads,
intermediate_size = intermediate_size,
max_query = max_query
)
if checkpoint is not None:
# with open(checkpoint, "rb") as f:
state_dict = torch.load(checkpoint)
decoder_as_encoder.load_state_dict(state_dict, strict=True)
# tob
print(checkpoint)
return decoder_as_encoder
if __name__ == '__main__':
x = torch.zeros(2, 896, 16, 16).cuda()
net = build_qwen2_decoder_as_encoder(checkpoint = '').cuda()
y = net(x)
# y = y.flatten(2).permute(0, 2, 1)
print('-------shape---------')
print(y.shape)
print('-------------------')
\ No newline at end of file
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Type
from functools import partial
from flash_attn import flash_attn_qkvpacked_func
# from .common import LayerNorm2d, MLPBlock
# from mmgpt.model.vision_encoder.flash_4 import _attention_rel_h_rel_w
def get_abs_pos(abs_pos, tgt_size):
dtype = abs_pos.dtype
src_size = abs_pos.size(1)
if src_size != tgt_size:
old_pos_embed = abs_pos.permute(0, 3, 1, 2)
old_pos_embed = old_pos_embed.to(torch.float32)
new_pos_embed = F.interpolate(
old_pos_embed,
size=(tgt_size, tgt_size),
mode='bicubic',
antialias=True,
align_corners=False,
).to(dtype)
new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
return new_pos_embed
else:
return abs_pos
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
class ImageEncoderViT(nn.Module):
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
"""
super().__init__()
self.img_size = img_size
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
)
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
self.net_3 = nn.Conv2d(512, 896, kernel_size=3, stride=2, padding=1, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
if self.pos_embed is not None:
# x = x + self.pos_embed
x = x + get_abs_pos(self.pos_embed, x.size(1))
for blk in self.blocks:
x = blk(x)
neck_output = self.neck(x.permute(0, 3, 1, 2))
conv2_output = self.net_2(neck_output)
# print(f"conv2_output shape: {conv2_output.shape}")
conv3_output = self.net_3(conv2_output)
return conv3_output
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation blocks"""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then
use global attention.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.norm2 = norm_layer(dim)
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
self.window_size = window_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + x
x = x + self.mlp(self.norm2(x))
return x
class Attention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (tuple(int, int) or None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
assert (
input_size is not None
), "Input size must be provided if using relative positional encoding."
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
rel_h, rel_w = None, None
if self.use_rel_pos:
rel_h, rel_w = add_decomposed_rel_pos(q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
q = q.view(B, self.num_heads, H * W, -1)
k = k.view(B, self.num_heads, H * W, -1)
v = v.view(B, self.num_heads, H * W, -1)
if self.use_rel_pos:
rel_h = rel_h.view(B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3))
rel_w = rel_w.view(B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3))
attn_bias = (rel_h + rel_w).view(B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4))
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_bias)
# x = _attention_rel_h_rel_w(q, k, v, rel_h, rel_w)
else:
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
# qkv = torch.stack([q, k, v], dim=1).transpose(1, 3).reshape(B, H * W, 3, self.num_heads, -1)
# x = flash_attn_qkvpacked_func(qkv, dropout_p=0.0, causal=False).transpose(1, 2)
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows, (Hp, Wp)
def window_unpartition(
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
) -> torch.Tensor:
"""
Window unpartition into original sequences and removing padding.
Args:
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
pad_hw (Tuple): padded height and width (Hp, Wp).
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
Hp, Wp = pad_hw
H, W = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
dtype = rel_pos.dtype
rel_pos = rel_pos.to(torch.float32)
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
).to(dtype)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(
q: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
Args:
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
rel_h = rel_h.unsqueeze(-1)
rel_w = rel_w.unsqueeze(-2)
rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
return rel_h, rel_w
class PatchEmbed(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
kernel_size: Tuple[int, int] = (16, 16),
stride: Tuple[int, int] = (16, 16),
padding: Tuple[int, int] = (0, 0),
in_chans: int = 3,
embed_dim: int = 768,
) -> None:
"""
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj(x)
# B C H W -> B H W C
x = x.permute(0, 2, 3, 1)
return x
def build_sam_vit_b(checkpoint=None):
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
def _build_sam(
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
checkpoint=None,
):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
image_encoder=ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
)
if checkpoint is not None:
# with open(checkpoint, "rb") as f:
state_dict = torch.load(checkpoint)
# print(state_dict.keys())
# for key in state_dict:
# image_encoder.load_state_dict({k[14:]: v for k, v in state_dict.items() if 'image_encoder' in k}, strict=False)
# ocr-anyting
# image_encoder.load_state_dict(state_dict, strict=True)
# tob
image_encoder.load_state_dict({k[30:]: v for k, v in state_dict.items() if 'vision_tower_high' in k}, strict=True)
print(checkpoint)
return image_encoder
\ No newline at end of file
# SPDX-License-Identifier: Apache-2.0
# adapted from https://github.com/deepseek-ai/DeepSeek-VL2/blob/faf18023f24b962b32d9f0a2d89e402a8d383a78/deepseek_vl2/models/modeling_deepseek_vl_v2.py
"""Inference-only Deepseek-VL2 model compatible with HuggingFace weights."""
import math
from collections.abc import Iterable, Mapping, Sequence
from typing import List, Literal, Optional, Set, Tuple, TypedDict, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import BatchFeature
from vllm.config import VllmConfig
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs, NestedTensors)
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
ImageSize, MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config,
MlpProjectorConfig,
VisionEncoderConfig)
from process.image_process import (
DeepseekOCR2Processor, count_tiles)
from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
# from vllm.utils import is_list_of
from vllm.model_executor.models.interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from vllm.model_executor.models.utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
from deepencoderv2.sam_vary_sdpa import build_sam_vit_b
# from deepencoder.clip_sdpa import build_clip_l
from deepencoderv2.qwen2_d2e import build_qwen2_decoder_as_encoder
from deepencoderv2.build_linear import MlpProjector
from addict import Dict
# import time
from config import IMAGE_SIZE, BASE_SIZE, CROP_MODE, PRINT_NUM_VIS_TOKENS, PROMPT
# The image token id may be various
_IMAGE_TOKEN = "<image>"
class DeepseekOCR2ProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(DeepseekVLV2Config)
def get_hf_processor(self, **kwargs: object):
return self.ctx.get_hf_processor(DeepseekOCR2Processor, **kwargs)
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None}
def get_num_image_tokens(self,
*,
image_width: int,
image_height: int,
cropping: bool = True) -> int:
hf_processor = self.get_hf_processor()
# image_size = hf_processor.image_size
# patch_size = hf_processor.patch_size
# downsample_ratio = hf_processor.downsample_ratio
image_size = IMAGE_SIZE
base_size = BASE_SIZE
patch_size = 16
downsample_ratio = 4
if CROP_MODE:
if image_width <= 768 and image_height <= 768:
crop_ratio = [1, 1]
else:
# images_crop_raw, crop_ratio = hf_processor.dynamic_preprocess(image)
# find the closest aspect ratio to the target
crop_ratio = count_tiles(image_width, image_height, image_size=IMAGE_SIZE)
# print('===========')
# print('crop_ratio ', crop_ratio)
# print('============')
num_width_tiles, num_height_tiles = crop_ratio
else:
num_width_tiles = num_height_tiles = 1
h = w = math.ceil((base_size // patch_size) / downsample_ratio)
h2 = w2 = math.ceil((image_size // patch_size) / downsample_ratio)
global_views_tokens = h * (w)
if num_width_tiles >1 or num_height_tiles>1:
local_views_tokens = (num_height_tiles * h2) * (num_width_tiles * w2)
else:
local_views_tokens = 0
return global_views_tokens + local_views_tokens + 1
def get_image_size_with_most_features(self) -> ImageSize:
if IMAGE_SIZE == 1024 and BASE_SIZE == 1280:
return ImageSize(width=1024*2, height=1024*2)
return ImageSize(width=768*2, height=768*2)
class DeepseekOCR2DummyInputsBuilder(
BaseDummyInputsBuilder[DeepseekOCR2ProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
max_image_size = self.info.get_image_size_with_most_features()
if '<image>' in PROMPT:
return {
"image":
DeepseekOCR2Processor().tokenize_with_images(images = self._get_dummy_images(width=max_image_size.width,
height=max_image_size.height,
num_images=num_images), bos=True, eos=True, cropping=CROP_MODE)
}
else:
return {
"image": []
}
class DeepseekOCR2MultiModalProcessor(
BaseMultiModalProcessor[DeepseekOCR2ProcessingInfo]):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
# print(mm_data)
if mm_data:
processed_outputs = self.info.ctx.call_hf_processor(
self.info.get_hf_processor(**mm_kwargs),
dict(prompt=prompt, **mm_data),
mm_kwargs,
)
else:
tokenizer = self.info.get_tokenizer()
processed_outputs = tokenizer(prompt,
add_special_tokens=True,
return_tensors="pt")
return processed_outputs
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
images_spatial_crop=MultiModalFieldConfig.batched("image"),
# image_embeds=MultiModalFieldConfig.batched("image2"),
images_crop=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_token_id = hf_processor.image_token_id
assert isinstance(image_token_id, int)
def get_replacement_deepseek_vl2(item_idx: int):
images = mm_items.get_items(
"image", (ImageEmbeddingItems, ImageProcessorItems))
if isinstance(images, ImageEmbeddingItems):
num_image_tokens = images.get_feature_size(item_idx)
else:
width = images[0][-1][0][0]
height = images[0][-1][0][1]
num_image_tokens = self.info.get_num_image_tokens(
image_width=width,
image_height=height,
# flag = True,
cropping=CROP_MODE,
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=get_replacement_deepseek_vl2,
)
]
def _cached_apply_hf_processor(
self,
prompt: Union[str, list[int]],
mm_data_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
) -> tuple[list[int], MultiModalKwargs, bool]:
# The processor logic is different for len(images) <= 2 vs > 2
# Since the processing cache assumes that the processor output is
# invariant of how many images are passed per prompt, we only
# perform caching for the most common case
if mm_data_items.get_count("image", strict=False) > 2:
# This code path corresponds to the cache being disabled
return self._apply_hf_processor_main(
prompt=prompt,
mm_items=mm_data_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
enable_hf_prompt_update=True,
)
return super()._cached_apply_hf_processor(
prompt=prompt,
mm_data_items=mm_data_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
)
@MULTIMODAL_REGISTRY.register_processor(
DeepseekOCR2MultiModalProcessor,
info=DeepseekOCR2ProcessingInfo,
dummy_inputs=DeepseekOCR2DummyInputsBuilder)
class DeepseekOCR2ForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
"language.": "language_model.",
})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: DeepseekVLV2Config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
# config.model_type ='deepseek_vl_v2'
self.config = config
self.multimodal_config = multimodal_config
self.vision_config = config.vision_config
self.projector_config = config.projector_config
self.text_config = config.text_config
model_config = vllm_config.model_config
tokenizer = cached_tokenizer_from_config(model_config)
self.image_token_id = tokenizer.vocab[_IMAGE_TOKEN]
self.sam_model = build_sam_vit_b()
self.qwen2_model = build_qwen2_decoder_as_encoder()
n_embed = 1280
self.projector = MlpProjector(Dict(projector_type="linear", input_dim=896, n_embed=n_embed))
self.tile_tag = config.tile_tag
self.global_view_pos = config.global_view_pos
# self.sam_model = torch.compile(self.sam_model, mode="reduce-overhead")
# self.vision_model = torch.compile(self.vision_model, mode="reduce-overhead")
# self.projector = torch.compile(self.projector, mode="max-autotune")
# special token for image token sequence format
embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
if self.tile_tag == "2D":
# <|view_separator|>, <|\n|>
# self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
else:
raise ValueError(
f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
)
if self.text_config.topk_method == "noaux_tc":
architectures = ["DeepseekV3ForCausalLM"]
# architectures = ["DeepseekForCausalLM"]
elif not self.text_config.use_mla:
architectures = ["DeepseekForCausalLM"]
else:
architectures = ["DeepseekV2ForCausalLM"]
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=self.text_config,
prefix=maybe_prefix(prefix, "language"),
architectures=architectures,
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
self.sam_model.to(dtype=torch.bfloat16)
def _parse_and_validate_image_input(
self, **kwargs: object):
pixel_values = kwargs.pop("pixel_values", None)
images_spatial_crop = kwargs.pop("images_spatial_crop", None)
images_crop = kwargs.pop("images_crop", None)
if pixel_values is None or torch.sum(pixel_values).item() == 0:
return None
if pixel_values is not None:
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
if not isinstance(images_spatial_crop, (torch.Tensor, list)):
raise ValueError("Incorrect type of image sizes. "
f"Got type: {type(images_spatial_crop)}")
if not isinstance(images_crop, (torch.Tensor, list)):
raise ValueError("Incorrect type of image crop. "
f"Got type: {type(images_crop)}")
return [pixel_values, images_crop, images_spatial_crop]
raise AssertionError("This line should be unreachable.")
def _pixel_values_to_embedding(
self,
pixel_values: torch.Tensor,
images_crop: torch.Tensor,
images_spatial_crop: torch.Tensor,
) -> NestedTensors:
# Pixel_values (global view): [n_image, batch_size, 3, height, width]
# images_spatial_crop: [n_image, batch_size, [num_tiles_w, num_tiles_h]]
# images_crop (local view): [n_image, batch_size, num_pathes, 3, h, w]
# split the pixel and image_crop, all batch_size = 1
images_in_this_batch = []
with torch.no_grad():
for jdx in range(images_spatial_crop.size(0)):
# with torch.set_grad_enabled(False):
patches = images_crop[jdx][0].to(torch.bfloat16) # batch_size = 1
# patches = images_crop[jdx][0]
image_ori = pixel_values[jdx]
crop_shape = images_spatial_crop[jdx][0]
if torch.sum(patches).item() != 0: # if all values = 0, no crop
# P, C, H, W = patches.shape
# crop_flag = 1
local_features_1 = self.sam_model(patches)
#TODO del patches
# torch.compiler.cudagraph_mark_step_begin()
local_features_2 = self.qwen2_model(local_features_1)
# local_features = torch.cat((local_features_2[:, 1:], local_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
local_features = self.projector(local_features_2)
global_features_1 = self.sam_model(image_ori)
global_features_2 = self.qwen2_model(global_features_1)
# global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
global_features = self.projector(global_features_2)
if PRINT_NUM_VIS_TOKENS:
print('=====================')
print('BASE: ', global_features.shape)
print('PATCHES: ', local_features.shape)
print('=====================')
_, hw, n_dim = global_features.shape
# h = w = int(hw ** 0.5)
_2, hw2, n_dim2 = local_features.shape
# h2 = w2 = int(hw2 ** 0.5)
# width_crop_num, height_crop_num = crop_shape[0], crop_shape[1]
# global_features = global_features.view(h, w, n_dim)
# global_features = torch.cat(
# [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
# )
global_features = global_features.view(-1, n_dim)
# local_features = local_features.view(height_crop_num, width_crop_num, h2, w2, n_dim2).permute(0, 2, 1, 3, 4).reshape(height_crop_num*h2, width_crop_num*w2, n_dim2)
# local_features = torch.cat(
# [local_features, self.image_newline[None, None, :].expand(height_crop_num * h2, 1, n_dim2)], dim=1
# )
local_features = local_features.view(-1, n_dim2)
global_local_features = torch.cat([local_features, global_features, self.view_seperator[None, :]], dim=0)
else:
global_features_1 = self.sam_model(image_ori)
global_features_2 = self.qwen2_model(global_features_1)
# global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
global_features = self.projector(global_features_2)
if PRINT_NUM_VIS_TOKENS:
print('=====================')
print('BASE: ', global_features.shape)
print('NO PATCHES')
print('=====================')
_, hw, n_dim = global_features.shape
# h = w = int(hw ** 0.5)
# global_features = global_features.view(h, w, n_dim)
# global_features = torch.cat(
# [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
# )
global_features = global_features.view(-1, n_dim)
global_local_features = torch.cat([global_features, self.view_seperator[None, :]], dim=0)
images_in_this_batch.append(global_local_features)
return images_in_this_batch
def _process_image_input(
self, image_input) -> torch.Tensor:
# image_input: [pixel_values, images_crop, images_spatial_crop]
pixel_values = image_input[0].to(torch.bfloat16)
# images_crop = image_input[1].to(torch.bfloat16)
images_crop = image_input[1]
# images_crop = image_input[1]
images_spatial_crop = image_input[2].to(dtype=torch.long)
# local_start = time.time()
vision_features = self._pixel_values_to_embedding(
pixel_values=pixel_values, images_crop = images_crop, images_spatial_crop=images_spatial_crop)
return vision_features
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
vision_embeddings = self._process_image_input(image_input)
return vision_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
# input_ids.to(torch.bfloat16)
# self.image_token_id.to(torch.bfloat16)
if multimodal_embeddings is not None:
# multimodal_embeddings = multimodal_embeddings.to(torch.bfloat16)
# multimodal_embeddings = [emb.to(torch.bfloat16) for emb in multimodal_embeddings]
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
self.image_token_id)
return inputs_embeds
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object):
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None
hidden_states = self.language_model(input_ids,
positions,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]:
processed_weights = []
for name, tensor in weights:
if 'sam_model' in name or 'qwen2_model' in name or 'projector' in name or 'view_seperator' in name:
new_name = name.replace('model.', '', 1)
else:
new_name = 'language.' + name
# tensor = tensor.to(torch.bfloat16)
processed_weights.append((new_name, tensor))
loader = AutoWeightsLoader(self)
autoloaded_weights = loader.load_weights(processed_weights, mapper=self.hf_to_vllm_mapper)
return autoloaded_weights
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment