Commit f314e457 authored by dengjb's avatar dengjb
Browse files

first commit

parent 50406f0b
Pipeline #1018 failed with stages
in 0 seconds
import os
import json
import gzip
import numpy as np
import itertools
from typing import *
from tqdm.auto import tqdm
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from .data import stream_jsonl
from .execution import check_correctness
IMPORT_HELPER = {
"python": [
"import math",
"import re",
"import sys",
"import copy",
"import datetime",
"import itertools",
"import collections",
"import heapq",
"import functools",
"import hashlib",
"import numpy",
"import numpy as np",
"import string",
"from typing import *",
"from collections import *",
],
"go" : [
"math",
"strings",
"fmt",
"strconv",
"time",
"bytes",
"regexp",
"sort",
"math/rand",
"crypto/md5",
],
"cpp" : [
"#include<stdlib.h>",
"#include<algorithm>",
"#include<math.h>",
"#include<stdio.h>",
"#include<vector>",
"#include<string>",
"#include<climits>",
"#include<cstring>",
"#include<iostream>",
"#include<cassert>"
],
"cs": ["using System.Numerics;", "using System.Diagnostics;", "using System.Collections.Generic;", "using System.Linq;", "using System.Text;", "using System.Security.Cryptography;", "using System.Collections.Generic;"]
}
LANGUAGE_NAME = {
"cpp" : "CPP",
"go" : "Go",
"java" : "Java",
"js" : "JavaScript",
"python": "Python",
}
def read_dataset(
data_file: str = None,
dataset_type: str = "humaneval",
num_shot=None,
) -> Dict:
"""
Reads a dataset and returns a dictionary of tasks.
"""
if num_shot is not None:
print(f"{num_shot}-shot setting...")
if "humaneval" in dataset_type.lower():
if data_file is None:
current_path = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(current_path, "..", "humaneval-x", "python", "data", "humaneval_python.jsonl.gz")
dataset = {task["task_id"]: task for task in stream_jsonl(data_file)}
else:
raise f"Dataset: {dataset_type} not supported."
return dataset
def estimate_pass_at_k(
num_samples: Union[int, List[int], np.ndarray],
num_correct: Union[List[int], np.ndarray],
k: int
) -> np.ndarray:
"""
Estimates pass@k of each problem and returns them in an array.
"""
def estimator(n: int, c: int, k: int) -> float:
"""
Calculates 1 - comb(n - c, k) / comb(n, k).
"""
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
if isinstance(num_samples, int):
num_samples_it = itertools.repeat(num_samples, len(num_correct))
else:
assert len(num_samples) == len(num_correct)
num_samples_it = iter(num_samples)
return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
def process_humaneval_test(sample, problems, example_test=False, is_mbpp=False, language="python"):
"""
Processes a sample for evaluation.
"""
task_id = sample["task_id"]
if is_mbpp:
return sample["generation"] + "\n" + "\n".join(problems[task_id]["test"])
#prompt = sample["prompt"]
if example_test and "example_test" in problems[task_id] and problems[task_id]["example_test"] != "":
test = problems[task_id]["example_test"]
else:
test = problems[task_id]["test"]
test = "\n".join(test)
code = sample["generation"]
# Pre-process for different languages
if language == "python":
test_setup = "\n".join(IMPORT_HELPER["python"]) + "\n"
test_string = test_setup + code + "\n" + test + "\n"
elif language == "cpp":
test_set_up = ""
for s in IMPORT_HELPER["cpp"]:
if s not in prompt:
test_set_up += s + "\n"
test_string = test_set_up + "\n" + code + "\n" + test
elif language == "java":
test_string = code + "\n" + test
elif language == "cs":
test_set_up = ""
for s in IMPORT_HELPER["cs"]:
test_set_up += s + "\n"
test_string = test_set_up + "\n" + code + "\n" + test
elif language in ["js", "javascript", "ts", "sh", "go"]:
test_string = code + "\n" + test
elif language == "go232":
import_string = problems[task_id]["import"]
prompt = prompt.replace(import_string, "")
if example_test and "example_test" in problems[task_id]:
test = problems[task_id]["example_test"]
else:
test = problems[task_id]["test"]
test_setup = problems[task_id]["test_setup"]
other_pkgs = []
for pkg in IMPORT_HELPER["go"]:
if pkg not in test_setup:
p = pkg.split("/")[-1]
if p + "." in code:
other_pkgs.append(f"\"{pkg}\"")
if other_pkgs:
import_other_pkgs = "import (\n" + " ".join([p + "\n" for p in other_pkgs]) + ")"
test_string = test_setup + "\n" + import_other_pkgs + "\n" + prompt + code + "\n" + test
else:
test_string = test_setup + "\n" + prompt + code + "\n" + test
elif language == "rust":
main = "\nfn main(){ \n } \n"
declaration = problems[task_id]["declaration"]
test_string = main + declaration + prompt + code + test
elif language == "php":
if code[:5] != "<?php":
code = "<?php\n" + code
test_string = code + "\n" + test + "?>"
return test_string
def stream_jsonl_all(filename: str) -> Iterable[Dict]:
"""
Streams a JSONL file.
"""
results = []
if filename.endswith(".gz"):
fp = gzip.open(open(filename, "rb"), "rt")
else:
fp = open(filename, "r")
for line in fp:
if any(not x.isspace() for x in line):
results.append(json.loads(line))
fp.close()
return results
def evaluate_functional_correctness(
input_file: str = None,
tmp_dir: str = "./",
n_workers: int = 32,
timeout: float = 10.0,
problem_file: str = "../data/humaneval_python.jsonl.gz",
out_dir: str = None,
k: List[int] = [1, 10, 100],
test_groundtruth: bool = False,
example_test: bool = False,
is_mbpp: bool = False,
language: str = "python",
):
"""
Evaluates the functional correctness of a model.
"""
if example_test:
print("Example test...")
problems = read_dataset(problem_file,
dataset_type="humaneval")
sample_jsonl = stream_jsonl_all(input_file)
with ThreadPoolExecutor(max_workers=n_workers) as executor:
futures = []
completion_id = Counter()
n_samples = 0
results = defaultdict(list)
if test_groundtruth:
print("Testing ground truth...")
for sample in tqdm(problems.values()):
task_id = sample["task_id"]
lang = task_id.split("/")[0].lower()
if lang == "javascript":
lang = "js"
tmp_dir_ = os.path.join(tmp_dir, lang, "evaluation")
sample["generation"] = sample["canonical_solution"]
sample["test_code"] = process_humaneval_test(sample, problems, example_test, language)
if sample["test_code"] is None:
continue
args = (task_id, sample, lang, timeout, tmp_dir_, completion_id[task_id])
future = executor.submit(check_correctness, *args)
futures.append(future)
completion_id[task_id] += 1
n_samples += 1
else:
print("Reading samples...")
for sample in tqdm(sample_jsonl):
task_id = sample["task_id"]
if not is_mbpp:
lang = language
if not is_mbpp and lang == "javascript":
lang = "js"
if is_mbpp:
lang = "python"
tmp_dir_ = os.path.join(tmp_dir, lang, "evaluation")
sample["task_id"] = task_id
sample["test_code"] = process_humaneval_test(sample, problems, example_test, is_mbpp, language)
if sample["test_code"] is None:
continue
if "completion_id" in sample:
completion_id_ = sample["completion_id"]
else:
completion_id_ = completion_id[task_id]
args = (task_id, sample, lang, timeout, tmp_dir_, completion_id_)
future = executor.submit(check_correctness, *args)
futures.append(future)
completion_id[task_id] += 1
n_samples += 1
if len(completion_id) == len(problems):
evaluate_pass_at_k = True
else:
evaluate_pass_at_k = False
print("Running test suites...")
for future in tqdm(as_completed(futures), total=len(futures)):
result = future.result()
results[result["task_id"]].append((result["completion_id"], result))
# Calculate pass@k.
total, correct = [], []
for result in results.values():
passed = [r[1]["passed"] for r in result]
total.append(len(passed))
correct.append(sum(passed))
total = np.array(total)
correct = np.array(correct)
if evaluate_pass_at_k:
ks = k
pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean()
for k in ks if (total >= k).all()}
print(pass_at_k)
else:
print("Total:", np.sum(total))
print("Correct:", np.sum(correct))
return pass_at_k
This diff is collapsed.
import time
import string
import multiprocessing
import os
import numpy as np
import json
import re
import torch
import datetime
import subprocess
import torch.distributed as dist
from attrdict import AttrDict
from tqdm import tqdm
from human_eval.evaluation import evaluate_functional_correctness
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList
from utils.dataset import MBPPDataset
from utils.utils import cleanup_code
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords_str, tokenizer):
StoppingCriteria.__init__(self)
self.current_context = []
self.tokenizer = tokenizer
self.keywords_str = keywords_str
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
self.current_context.append(input_ids[0][-1].item())
current_context = self.tokenizer.decode(self.current_context)
for word in self.keywords_str:
if word in current_context:
return True
return False
class MBPP:
"""
MBPP evaluation class.
"""
def __init__(self, data_root, max_seq_len=2048,
language="python", max_gen_len=200, batch_size=512,
log_dir=None, temperature=0, issft=False, top_p=0.95,
model_name="", inference_increment=True,
tokenizer_cfg=None, n_sample=40, k_sample=1):
self.data_root = data_root
self.max_seq_len = max_seq_len
self.max_gen_len = max_gen_len
self.batch_size = batch_size
self.k = k_sample
self.n_sample = n_sample
self.language = language
self.log_dir = log_dir
self.sft = issft
self.temperature = temperature
self.top_p = top_p
self.model_name = tokenizer_cfg["model_path"].replace("/", "_")
self.inference_increment = inference_increment
os.makedirs(self.log_dir, exist_ok=True)
tokenizer_cls = tokenizer_cfg.pop('cls')
try:
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_cfg.pop("model_path"), trust_remote_code=True)
except Exception as e:
print(e)
assert False
@torch.no_grad()
def eval_model(self, gpt, accelerator):
"""
Evaluate the model.
"""
assert self.log_dir is not None, "log_dir should not be None when evaluating MBPP"
dataset = MBPPDataset(self.data_root, samplenum=self.n_sample)
nprompt = len(dataset) // self.n_sample
dp_rank = accelerator.process_index
dp_size = accelerator.num_processes
if self.k > 1:
assert self.n_sample >= 80, "MBPP PASS@80 needs n_sample >= 80"
gpt.eval()
prompt_indices_split = np.array_split(range(nprompt), dp_size)
prompt_indices = prompt_indices_split[dp_rank]
indices = []
for x in prompt_indices:
for j in range(self.n_sample):
indices.append(x * self.n_sample + j)
all_num = len(indices)
processed_num = 0
log_file = os.path.join(self.log_dir,
f'{self.model_name}_rank{dp_rank}_bs{self.batch_size}_shot_log_{self.language}.json')
tmpfile = open(log_file, "w")
totoalnum = 0
start_time = time.time()
for idx in tqdm(range(0, len(indices), self.batch_size)):
prompt_list = []
prompt_lens = []
answers_list = []
test_list = []
taskid = []
tokenized_prompt_lens = []
for j in indices[idx:idx + self.batch_size]:
data = dataset[j]
prompt = dataset.prompt
prompt1 = data["prompt"]
tests = "\n".join(data["test"])
test_list.append(data["test"])
prompt_curr = f"You are an expert Python programmer, and here is your task: {prompt1} Your code should pass these tests:\n\n{tests}\n[BEGIN]"
fprompt = ""
for i in range(len(prompt) - 1, -1, -1):
finalprompt = prompt[i] + prompt_curr
curr_seq_len = len(self.tokenizer.encode(finalprompt))
if curr_seq_len >= self.max_seq_len - self.max_gen_len:
continue
else:
fprompt = finalprompt
break
if fprompt == "":
fprompt = prompt_curr
encodelist = self.tokenizer.encode(fprompt)
while True:
try:
fprompt = self.tokenizer.decode(encodelist[:self.max_seq_len - self.max_gen_len])
break
except:
encodelist.pop(-1)
prompt_list.append(fprompt)
answers_list.append(data['code'])
prompt_lens.append(len(fprompt))
taskid.append(data["task_id"])
tokenized_prompt = self.tokenizer(prompt_list, padding=True, return_tensors="pt")
inputids = tokenized_prompt["input_ids"].to(gpt.device)[:, -self.max_seq_len:]
attenion_mask = tokenized_prompt["attention_mask"].to(gpt.device)[:, -self.max_seq_len:]
if self.temperature == 0:
stop_criteria = KeywordsStoppingCriteria(["[DONE]"], self.tokenizer)
decoded = gpt.generate(
input_ids=inputids,
attention_mask=attenion_mask,
max_new_tokens=self.max_gen_len,
top_p=self.top_p,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=False,
stopping_criteria=StoppingCriteriaList([stop_criteria]),
pad_token_id=self.tokenizer.eos_token_id,
)
else:
decoded = gpt.generate(
tokenized_prompt_lens,
max_new_tokens=self.max_gen_len,
temperature=self.temperature,
top_p=0.95,
inference_increment=True,
stopping_criteria=StoppingCriteriaList([stop_criteria]),
pad_token_id=self.tokenizer.eos_token_id,
)
for local_idx, text in enumerate(decoded):
prediction = decoded[local_idx]
prediction = self.tokenizer.decode(prediction, skip_special_tokens=True)
#print(prediction)
suffixprediction = prediction[prompt_lens[local_idx]:]
suffixprediction = suffixprediction.split("[DONE]")[0].strip()
res = {"task_id": taskid[local_idx], "generation": suffixprediction}
tmpfile.write(json.dumps(res) + "\n")
tmpfile.flush()
totoalnum += 1
self.log_score(dp_rank, totoalnum, all_num, start_time, self.batch_size)
tmpfile.close()
accelerator.wait_for_everyone()
self._calculate_final_score(accelerator)
def log_score(self, dp_rank, processed_num, all_num, start_time, bs):
"""
Log the score.
"""
mem = torch.cuda.max_memory_allocated() / (1 << 30)
avg_time = (time.time() - start_time) / processed_num * bs
print(
f'DP RANK:{dp_rank} process_num/all_num:{int(processed_num)}/{all_num} '
f'avg_time_per_batch:{avg_time:.2f} s '
f'still_need:{((all_num - processed_num) // bs + 1) * avg_time / 60:.2f} m',
f'mem:{mem:.3f} GiB bs:{bs}',
flush=True
)
if processed_num == all_num:
print(f'EVAL DONE! Process time {(time.time() - start_time) / 60:.2f} m', flush=True)
def _calculate_final_score(self, accelerator):
"""
Calculate the final score.
"""
if accelerator.is_local_main_process:
logfilepath = os.path.join(self.log_dir, f'final_{self.model_name}.jsonl')
logfile = open(logfilepath, "w")
for i in range(accelerator.num_processes):
tmplogfile = os.path.join(self.log_dir, f'{self.model_name}_rank{i}_bs{self.batch_size}_shot_log_{self.language}.json')
logfile.write(open(tmplogfile).read().strip() + "\n")
os.remove(tmplogfile)
logfile.close()
timeout = 10
runlang = self.language
res = evaluate_functional_correctness(input_file=logfilepath, problem_file=os.path.join(self.data_root, f"mbpp_test.jsonl"), tmp_dir=self.log_dir, timeout=timeout, language=runlang)
print("score is", res['pass@%d' % self.k])
os.remove(logfilepath)
return
\ No newline at end of file
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: 'no'
num_machines: 1
num_processes: 3
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
import os
import numpy as np
import json
class MBPPDataset:
def __init__(self, root, samplenum=1):
"""
root: 数据文件的根目录
"""
self.root = root
self.data = open(os.path.join(root, "mbpp.jsonl")).readlines()
self.clean_data = self.get_qa_only_data(self.data)
self.prompt = []
for i in range(1, 4):
prompt = self.clean_data[i]["prompt"]
tests = "\n".join(self.clean_data[i]["test"])
code = self.clean_data[i]["code"].replace("\r", "").replace("\t", " ")
prompt1 = f"You are an expert Python programmer, and here is your task: {prompt} Your code should pass these tests:\n\n{tests}\n[BEGIN]\n{code}\n[DONE]\n"
if len(self.prompt) == 0:
self.prompt.append(prompt1)
else:
self.prompt.append(self.prompt[-1] + prompt1)
self.testdata = []
for i in range(10, 510):
for j in range(samplenum):
self.testdata.append(self.clean_data[i])
np.random.seed(1234)
print(f"Read MBPP from {root}, number of samples {len(self.testdata)}")
def get_qa_only_data(self, data_json):
ans = []
for line in data_json:
line = json.loads(line)
prompt = line["text"]
suffix = line["test_list"]
code = line["code"]
ans.append({"prompt":prompt, "test":suffix, "code":code, "task_id":line["task_id"]})
return ans
def __len__(self):
return len(self.testdata)
def __getitem__(self, index):
sample = self.testdata[index]
return sample
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment