DeepLabV3.cpp 6.33 KB
Newer Older
shangxl's avatar
shangxl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#include <DeepLabV3.h>

#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>

#include <Filesystem.h>
#include <SimpleLog.h>
#include <algorithm>

namespace migraphxSamples
{

static float Sigmoid(float x) { return (1 / (1 + exp(-x))); }

static std::vector<float> softmax(vector<float> v){

    std::vector<float> probs(v.size());
    float max_val = *std::max_element(v.begin(),v.end());
    float sum_exp = 0.0f;
    for (int i = 0; i < v.size(); ++i) {
        probs[i] = std::exp(v[i] - max_val);
        sum_exp += probs[i];
    }
    for (int i = 0; i < v.size(); ++i) {
       probs[i] /= sum_exp;
    }

    return probs;
}

// 定义21个类别的颜色映射表(BGR格式)
std::vector<cv::Scalar> create_color_map() {
    return {
        cv::Scalar(0, 0, 0),       // 0: 黑色(背景)
        cv::Scalar(255, 0, 0),     // 1: 蓝色
        cv::Scalar(0, 255, 0),     // 2: 绿色
        cv::Scalar(0, 0, 255),     // 3: 红色
        cv::Scalar(255, 255, 0),   // 4: 青色
        cv::Scalar(255, 0, 255),   // 5: 品红
        cv::Scalar(0, 255, 255),   // 6: 黄色
        cv::Scalar(128, 0, 0),     // 7: 深蓝
        cv::Scalar(0, 128, 0),     // 8: 深绿
        cv::Scalar(0, 0, 128),     // 9: 深红
        cv::Scalar(128, 128, 0),   // 10: 深青
        cv::Scalar(128, 0, 128),   // 11: 深品红
        cv::Scalar(0, 128, 128),   // 12: 深黄
        cv::Scalar(192, 192, 192), // 13: 灰色
        cv::Scalar(128, 128, 128), // 14: 深灰
        cv::Scalar(64, 0, 0),      // 15: 暗蓝
        cv::Scalar(0, 64, 0),      // 16: 暗绿
        cv::Scalar(0, 0, 64),      // 17: 暗红
        cv::Scalar(64, 64, 0),     // 18: 暗青
        cv::Scalar(64, 0, 64),     // 19: 暗品红
        cv::Scalar(0, 64, 64)      // 20: 暗黄
    };
}



DeepLabV3::DeepLabV3() {}

DeepLabV3::~DeepLabV3() { configurationFile.release(); }


ErrorCode DeepLabV3::Initialize(InitializationParameterOfSegmentation initParamOfSegmentationUnet)
{
    // 读取配置文件
    std::string configFilePath = initParamOfSegmentationUnet.configFilePath;
    if(!Exists(configFilePath))
    {
        LOG_ERROR(stdout, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, cv::FileStorage::READ))
    {
        LOG_ERROR(stdout, "fail to open configuration file\n");
        return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(stdout, "succeed to open configuration file\n");

    // 获取配置文件参数
    cv::FileNode netNode  = configurationFile["DeepLabV3"];
    std::string modelPath = (std::string)netNode["ModelPath"];

    // 设置最大输入shape
    migraphx::onnx_options onnx_options;
    onnx_options.map_input_dims["inputs"] = {1, 3, 256, 256};

    // 加载模型
    if(!Exists(modelPath))
    {
        LOG_ERROR(stdout, "%s not exist!\n", modelPath.c_str());
        return MODEL_NOT_EXIST;
    }
    net = migraphx::parse_onnx(modelPath, onnx_options);
    LOG_INFO(stdout, "succeed to load model: %s\n", GetFileName(modelPath).c_str());

    // 获取模型输入/输出节点信息
    std::unordered_map<std::string, migraphx::shape> inputs  = net.get_inputs();
    std::unordered_map<std::string, migraphx::shape> outputs = net.get_outputs();
    inputName = inputs.begin()->first;
    inputShape = inputs.begin()->second;
    int N = inputShape.lens()[0];
    int C = inputShape.lens()[1];
    int H = inputShape.lens()[2];
    int W = inputShape.lens()[3];
    inputSize = cv::Size(W, H);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 编译模型
    migraphx::compile_options options;
    options.device_id    = 0; // 设置GPU设备,默认为0号设备
    options.offload_copy = true;
    net.compile(gpuTarget, options);
    LOG_INFO(stdout, "succeed to compile model: %s\n", GetFileName(modelPath).c_str());

    // warm up
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName] = migraphx::argument{inputShape};
    net.eval(inputData);

    // log输出日志信息
    LOG_INFO(stdout, "InputSize:%dx%d\n", inputSize.width, inputSize.height);
    LOG_INFO(stdout, "InputName:%s\n", inputName.c_str());

    return SUCCESS;
}


ErrorCode DeepLabV3::Segmentation(const cv::Mat& srcImage, cv::Mat& maskImage)
{
    if(srcImage.empty() || srcImage.type() != CV_8UC3)
    {
        LOG_ERROR(stdout, "image error!\n");
        return IMAGE_ERROR;
    }

    // 数据预处理并转换为NCHW格式
    cv::Mat inputBlob;
    cv::dnn::blobFromImage(
        srcImage, inputBlob, 1 / 255.0, inputSize, cv::Scalar(0, 0, 0), true, false);

    // 创建输入数据
    std::unordered_map<std::string, migraphx::argument> inputData;
    inputData[inputName] = migraphx::argument{inputShape, (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> results = net.eval(inputData);

    // 获取输出节点的属性
    migraphx::argument result   = results[0];                 // 获取第一个输出节点的数据
    migraphx::shape outputShape = result.get_shape();         // 输出节点的shape
    std::vector<std::size_t> outputSize = outputShape.lens(); // 每一维大小,维度顺序为(N,C,H,W)

    int numberOfOutput = outputShape.elements();              // 输出节点元素的个数
    float* data        = (float*)result.data();               // 输出节点数据指针

    int N = outputShape.lens()[0];
    int C = outputShape.lens()[1];
    int H = outputShape.lens()[2];
    int W = outputShape.lens()[3];

        
        
    cv::Mat outputImage(cv::Size(W, H), CV_8UC3);
    // 创建颜色映射表
    std::vector<cv::Scalar> color_map = create_color_map();

    for(int i = 0;i < H; i++){
        for(int j = 0;j < W;j++){
            std::vector<float> channel_value;
            for(int k = 0;k < C;k++){
                channel_value.push_back(data[k*(H*W)+i*W+j]);
            }
            std::vector<float> probs = softmax(channel_value);
            // 找到概率最高的类别索引
            int max_index = std::max_element(probs.begin(),probs.end())-probs.begin();
            cv::Scalar sc = color_map[max_index];
            outputImage.at<cv::Vec3b>(i, j)[0]= sc.val[0]; 
            outputImage.at<cv::Vec3b>(i, j)[1]= sc.val[1];
            outputImage.at<cv::Vec3b>(i, j)[2]= sc.val[2];

        }
    }

    maskImage = outputImage.clone();
    return SUCCESS;
}

}