util.py 7.17 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# -*- coding: utf-8 -*-
# @Time    : 2019/8/23 21:59
# @Author  : zhoujun
import json
import pathlib
import time
import os
import glob
from natsort import natsorted
import cv2
import matplotlib.pyplot as plt
import numpy as np


def get_file_list(folder_path: str, p_postfix: list = None, sub_dir: bool = True) -> list:
    """
    获取所给文件目录里的指定后缀的文件,读取文件列表目前使用的是 os.walk 和 os.listdir ,这两个目前比 pathlib 快很多
    :param filder_path: 文件夹名称
    :param p_postfix: 文件后缀,如果为 [.*]将返回全部文件
    :param sub_dir: 是否搜索子文件夹
    :return: 获取到的指定类型的文件列表
    """
    assert os.path.exists(folder_path) and os.path.isdir(folder_path)
    if p_postfix is None:
        p_postfix = ['.jpg']
    if isinstance(p_postfix, str):
        p_postfix = [p_postfix]
    file_list = [x for x in glob.glob(folder_path + '/**/*.*', recursive=True) if
                 os.path.splitext(x)[-1] in p_postfix or '.*' in p_postfix]
    return natsorted(file_list)


def setup_logger(log_file_path: str = None):
    import logging
    logging._warn_preinit_stderr = 0
    logger = logging.getLogger('DBNet.pytorch')
    formatter = logging.Formatter('%(asctime)s %(name)s %(levelname)s: %(message)s')
    ch = logging.StreamHandler()
    ch.setFormatter(formatter)
    logger.addHandler(ch)
    if log_file_path is not None:
        file_handle = logging.FileHandler(log_file_path)
        file_handle.setFormatter(formatter)
        logger.addHandler(file_handle)
    logger.setLevel(logging.DEBUG)
    return logger


# --exeTime
def exe_time(func):
    def newFunc(*args, **args2):
        t0 = time.time()
        back = func(*args, **args2)
        print("{} cost {:.3f}s".format(func.__name__, time.time() - t0))
        return back

    return newFunc


def load(file_path: str):
    file_path = pathlib.Path(file_path)
    func_dict = {'.txt': _load_txt, '.json': _load_json, '.list': _load_txt}
    assert file_path.suffix in func_dict
    return func_dict[file_path.suffix](file_path)


def _load_txt(file_path: str):
    with open(file_path, 'r', encoding='utf8') as f:
        content = [x.strip().strip('\ufeff').strip('\xef\xbb\xbf') for x in f.readlines()]
    return content


def _load_json(file_path: str):
    with open(file_path, 'r', encoding='utf8') as f:
        content = json.load(f)
    return content


def save(data, file_path):
    file_path = pathlib.Path(file_path)
    func_dict = {'.txt': _save_txt, '.json': _save_json}
    assert file_path.suffix in func_dict
    return func_dict[file_path.suffix](data, file_path)


def _save_txt(data, file_path):
    """
    将一个list的数组写入txt文件里
    :param data:
    :param file_path:
    :return:
    """
    if not isinstance(data, list):
        data = [data]
    with open(file_path, mode='w', encoding='utf8') as f:
        f.write('\n'.join(data))


def _save_json(data, file_path):
    with open(file_path, 'w', encoding='utf-8') as json_file:
        json.dump(data, json_file, ensure_ascii=False, indent=4)


def show_img(imgs: np.ndarray, title='img'):
    color = (len(imgs.shape) == 3 and imgs.shape[-1] == 3)
    imgs = np.expand_dims(imgs, axis=0)
    for i, img in enumerate(imgs):
        plt.figure()
        plt.title('{}_{}'.format(title, i))
        plt.imshow(img, cmap=None if color else 'gray')
    plt.show()


def draw_bbox(img_path, result, color=(255, 0, 0), thickness=2):
    if isinstance(img_path, str):
        img_path = cv2.imread(img_path)
        # img_path = cv2.cvtColor(img_path, cv2.COLOR_BGR2RGB)
    img_path = img_path.copy()
    for point in result:
        point = point.astype(int)
        cv2.polylines(img_path, [point], True, color, thickness)
    return img_path


def cal_text_score(texts, gt_texts, training_masks, running_metric_text, thred=0.5):
    training_masks = training_masks.data.cpu().numpy()
    pred_text = texts.data.cpu().numpy() * training_masks
    pred_text[pred_text <= thred] = 0
    pred_text[pred_text > thred] = 1
    pred_text = pred_text.astype(np.int32)
    gt_text = gt_texts.data.cpu().numpy() * training_masks
    gt_text = gt_text.astype(np.int32)
    running_metric_text.update(gt_text, pred_text)
    score_text, _ = running_metric_text.get_scores()
    return score_text


def order_points_clockwise(pts):
    rect = np.zeros((4, 2), dtype="float32")
    s = pts.sum(axis=1)
    rect[0] = pts[np.argmin(s)]
    rect[2] = pts[np.argmax(s)]
    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]
    rect[3] = pts[np.argmax(diff)]
    return rect


def order_points_clockwise_list(pts):
    pts = pts.tolist()
    pts.sort(key=lambda x: (x[1], x[0]))
    pts[:2] = sorted(pts[:2], key=lambda x: x[0])
    pts[2:] = sorted(pts[2:], key=lambda x: -x[0])
    pts = np.array(pts)
    return pts


def get_datalist(train_data_path):
    """
    获取训练和验证的数据list
    :param train_data_path: 训练的dataset文件列表,每个文件内以如下格式存储 ‘path/to/img\tlabel’
    :return:
    """
    train_data = []
    for p in train_data_path:
        with open(p, 'r', encoding='utf-8') as f:
            for line in f.readlines():
                line = line.strip('\n').replace('.jpg ', '.jpg\t').split('\t')
                if len(line) > 1:
                    img_path = pathlib.Path(line[0].strip(' '))
                    label_path = pathlib.Path(line[1].strip(' '))
                    if img_path.exists() and img_path.stat().st_size > 0 and label_path.exists() and label_path.stat().st_size > 0:
                        train_data.append((str(img_path), str(label_path)))
    return train_data


def parse_config(config: dict) -> dict:
    import anyconfig
    base_file_list = config.pop('base')
    base_config = {}
    for base_file in base_file_list:
        tmp_config = anyconfig.load(open(base_file, 'rb'))
        if 'base' in tmp_config:
            tmp_config = parse_config(tmp_config)
        anyconfig.merge(tmp_config, base_config)
        base_config = tmp_config
    anyconfig.merge(base_config, config)
    return base_config


def save_result(result_path, box_list, score_list, is_output_polygon):
    if is_output_polygon:
        with open(result_path, 'wt') as res:
            for i, box in enumerate(box_list):
                box = box.reshape(-1).tolist()
                result = ",".join([str(int(x)) for x in box])
                score = score_list[i]
                res.write(result + ',' + str(score) + "\n")
    else:
        with open(result_path, 'wt') as res:
            for i, box in enumerate(box_list):
                score = score_list[i]
                box = box.reshape(-1).tolist()
                result = ",".join([str(int(x)) for x in box])
                res.write(result + ',' + str(score) + "\n")


def expand_polygon(polygon):
    """
    对只有一个字符的框进行扩充
    """
    (x, y), (w, h), angle = cv2.minAreaRect(np.float32(polygon))
    if angle < -45:
        w, h = h, w
        angle += 90
    new_w = w + h
    box = ((x, y), (new_w, h), angle)
    points = cv2.boxPoints(box)
    return order_points_clockwise(points)


if __name__ == '__main__':
    img = np.zeros((1, 3, 640, 640))
    show_img(img[0][0])
    plt.show()