trainer.py 9.94 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
# @Time    : 2019/8/23 21:58
# @Author  : zhoujun
import time

import torch
import torchvision.utils as vutils
from tqdm import tqdm

from base import BaseTrainer
from utils import WarmupPolyLR, runningScore, cal_text_score


class Trainer(BaseTrainer):
    def __init__(self, config, model, criterion, train_loader, validate_loader, metric_cls, post_process=None):
        super(Trainer, self).__init__(config, model, criterion)
        self.show_images_iter = self.config['trainer']['show_images_iter']
        self.train_loader = train_loader
        if validate_loader is not None:
            assert post_process is not None and metric_cls is not None
        self.validate_loader = validate_loader
        self.post_process = post_process
        self.metric_cls = metric_cls
        self.train_loader_len = len(train_loader)
        if self.config['lr_scheduler']['type'] == 'WarmupPolyLR':
            warmup_iters = config['lr_scheduler']['args']['warmup_epoch'] * self.train_loader_len
            if self.start_epoch > 1:
                self.config['lr_scheduler']['args']['last_epoch'] = (self.start_epoch - 1) * self.train_loader_len
            self.scheduler = WarmupPolyLR(self.optimizer, max_iters=self.epochs * self.train_loader_len,
                                          warmup_iters=warmup_iters, **config['lr_scheduler']['args'])
        if self.validate_loader is not None:
            self.logger_info(
                'train dataset has {} samples,{} in dataloader, validate dataset has {} samples,{} in dataloader'.format(
                    len(self.train_loader.dataset), self.train_loader_len, len(self.validate_loader.dataset), len(self.validate_loader)))
        else:
            self.logger_info('train dataset has {} samples,{} in dataloader'.format(len(self.train_loader.dataset), self.train_loader_len))

    def _train_epoch(self, epoch):
        self.model.train()
        epoch_start = time.time()
        batch_start = time.time()
        train_loss = 0.
        running_metric_text = runningScore(2)
        lr = self.optimizer.param_groups[0]['lr']

        for i, batch in enumerate(self.train_loader):
            if i >= self.train_loader_len:
                break
            self.global_step += 1
            lr = self.optimizer.param_groups[0]['lr']

            # 数据进行转换和丢到gpu
            for key, value in batch.items():
                if value is not None:
                    if isinstance(value, torch.Tensor):
                        batch[key] = value.to(self.device)
            cur_batch_size = batch['img'].size()[0]

            preds = self.model(batch['img'])
            loss_dict = self.criterion(preds, batch)
            # backward
            self.optimizer.zero_grad()
            loss_dict['loss'].backward()
            self.optimizer.step()
            if self.config['lr_scheduler']['type'] == 'WarmupPolyLR':
                self.scheduler.step()
            # acc iou
            score_shrink_map = cal_text_score(preds[:, 0, :, :], batch['shrink_map'], batch['shrink_mask'], running_metric_text,
                                              thred=self.config['post_processing']['args']['thresh'])

            # loss 和 acc 记录到日志
            loss_str = 'loss: {:.4f}, '.format(loss_dict['loss'].item())
            for idx, (key, value) in enumerate(loss_dict.items()):
                loss_dict[key] = value.item()
                if key == 'loss':
                    continue
                loss_str += '{}: {:.4f}'.format(key, loss_dict[key])
                if idx < len(loss_dict) - 1:
                    loss_str += ', '

            train_loss += loss_dict['loss']
            acc = score_shrink_map['Mean Acc']
            iou_shrink_map = score_shrink_map['Mean IoU']

            if self.global_step % self.log_iter == 0:
                batch_time = time.time() - batch_start
                self.logger_info(
                    '[{}/{}], [{}/{}], global_step: {}, speed: {:.1f} samples/sec, acc: {:.4f}, iou_shrink_map: {:.4f}, {}, lr:{:.6}, time:{:.2f}'.format(
                        epoch, self.epochs, i + 1, self.train_loader_len, self.global_step, self.log_iter * cur_batch_size / batch_time, acc,
                        iou_shrink_map, loss_str, lr, batch_time))
                batch_start = time.time()

            if self.tensorboard_enable and self.config['local_rank'] == 0:
                # write tensorboard
                for key, value in loss_dict.items():
                    self.writer.add_scalar('TRAIN/LOSS/{}'.format(key), value, self.global_step)
                self.writer.add_scalar('TRAIN/ACC_IOU/acc', acc, self.global_step)
                self.writer.add_scalar('TRAIN/ACC_IOU/iou_shrink_map', iou_shrink_map, self.global_step)
                self.writer.add_scalar('TRAIN/lr', lr, self.global_step)
                if self.global_step % self.show_images_iter == 0:
                    # show images on tensorboard
                    self.inverse_normalize(batch['img'])
                    self.writer.add_images('TRAIN/imgs', batch['img'], self.global_step)
                    # shrink_labels and threshold_labels
                    shrink_labels = batch['shrink_map']
                    threshold_labels = batch['threshold_map']
                    shrink_labels[shrink_labels <= 0.5] = 0
                    shrink_labels[shrink_labels > 0.5] = 1
                    show_label = torch.cat([shrink_labels, threshold_labels])
                    show_label = vutils.make_grid(show_label.unsqueeze(1), nrow=cur_batch_size, normalize=False, padding=20, pad_value=1)
                    self.writer.add_image('TRAIN/gt', show_label, self.global_step)
                    # model output
                    show_pred = []
                    for kk in range(preds.shape[1]):
                        show_pred.append(preds[:, kk, :, :])
                    show_pred = torch.cat(show_pred)
                    show_pred = vutils.make_grid(show_pred.unsqueeze(1), nrow=cur_batch_size, normalize=False, padding=20, pad_value=1)
                    self.writer.add_image('TRAIN/preds', show_pred, self.global_step)
        return {'train_loss': train_loss / self.train_loader_len, 'lr': lr, 'time': time.time() - epoch_start,
                'epoch': epoch}

    def _eval(self, epoch):
        self.model.eval()
        # torch.cuda.empty_cache()  # speed up evaluating after training finished
        raw_metrics = []
        total_frame = 0.0
        total_time = 0.0
        for i, batch in tqdm(enumerate(self.validate_loader), total=len(self.validate_loader), desc='test model'):
            with torch.no_grad():
                # 数据进行转换和丢到gpu
                for key, value in batch.items():
                    if value is not None:
                        if isinstance(value, torch.Tensor):
                            batch[key] = value.to(self.device)
                start = time.time()
                preds = self.model(batch['img'])
                boxes, scores = self.post_process(batch, preds,is_output_polygon=self.metric_cls.is_output_polygon)
                total_frame += batch['img'].size()[0]
                total_time += time.time() - start
                raw_metric = self.metric_cls.validate_measure(batch, (boxes, scores))
                raw_metrics.append(raw_metric)
        metrics = self.metric_cls.gather_measure(raw_metrics)
        self.logger_info('FPS:{}'.format(total_frame / total_time))
        return metrics['recall'].avg, metrics['precision'].avg, metrics['fmeasure'].avg

    def _on_epoch_finish(self):
        self.logger_info('[{}/{}], train_loss: {:.4f}, time: {:.4f}, lr: {}'.format(
            self.epoch_result['epoch'], self.epochs, self.epoch_result['train_loss'], self.epoch_result['time'],
            self.epoch_result['lr']))
        net_save_path = '{}/model_latest.pth'.format(self.checkpoint_dir)
        net_save_path_best = '{}/model_best.pth'.format(self.checkpoint_dir)

        if self.config['local_rank'] == 0:
            self._save_checkpoint(self.epoch_result['epoch'], net_save_path)
            save_best = False
            if self.validate_loader is not None and self.metric_cls is not None:  # 使用f1作为最优模型指标
                recall, precision, hmean = self._eval(self.epoch_result['epoch'])

                if self.tensorboard_enable:
                    self.writer.add_scalar('EVAL/recall', recall, self.global_step)
                    self.writer.add_scalar('EVAL/precision', precision, self.global_step)
                    self.writer.add_scalar('EVAL/hmean', hmean, self.global_step)
                self.logger_info('test: recall: {:.6f}, precision: {:.6f}, f1: {:.6f}'.format(recall, precision, hmean))

                if hmean >= self.metrics['hmean']:
                    save_best = True
                    self.metrics['train_loss'] = self.epoch_result['train_loss']
                    self.metrics['hmean'] = hmean
                    self.metrics['precision'] = precision
                    self.metrics['recall'] = recall
                    self.metrics['best_model_epoch'] = self.epoch_result['epoch']
            else:
                if self.epoch_result['train_loss'] <= self.metrics['train_loss']:
                    save_best = True
                    self.metrics['train_loss'] = self.epoch_result['train_loss']
                    self.metrics['best_model_epoch'] = self.epoch_result['epoch']
            best_str = 'current best, '
            for k, v in self.metrics.items():
                best_str += '{}: {:.6f}, '.format(k, v)
            self.logger_info(best_str)
            if save_best:
                import shutil
                shutil.copy(net_save_path, net_save_path_best)
                self.logger_info("Saving current best: {}".format(net_save_path_best))
            else:
                self.logger_info("Saving checkpoint: {}".format(net_save_path))


    def _on_train_finish(self):
        for k, v in self.metrics.items():
            self.logger_info('{}:{}'.format(k, v))
        self.logger_info('finish train')