basic_loss.py 3.39 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# -*- coding: utf-8 -*-
# @Time    : 2019/12/4 14:39
# @Author  : zhoujun
import torch
import torch.nn as nn


class BalanceCrossEntropyLoss(nn.Module):
    '''
    Balanced cross entropy loss.
    Shape:
        - Input: :math:`(N, 1, H, W)`
        - GT: :math:`(N, 1, H, W)`, same shape as the input
        - Mask: :math:`(N, H, W)`, same spatial shape as the input
        - Output: scalar.

    Examples::

        >>> m = nn.Sigmoid()
        >>> loss = nn.BCELoss()
        >>> input = torch.randn(3, requires_grad=True)
        >>> target = torch.empty(3).random_(2)
        >>> output = loss(m(input), target)
        >>> output.backward()
    '''

    def __init__(self, negative_ratio=3.0, eps=1e-6):
        super(BalanceCrossEntropyLoss, self).__init__()
        self.negative_ratio = negative_ratio
        self.eps = eps

    def forward(self,
                pred: torch.Tensor,
                gt: torch.Tensor,
                mask: torch.Tensor,
                return_origin=False):
        '''
        Args:
            pred: shape :math:`(N, 1, H, W)`, the prediction of network
            gt: shape :math:`(N, 1, H, W)`, the target
            mask: shape :math:`(N, H, W)`, the mask indicates positive regions
        '''
        positive = (gt * mask).byte()
        negative = ((1 - gt) * mask).byte()
        positive_count = int(positive.float().sum())
        negative_count = min(int(negative.float().sum()), int(positive_count * self.negative_ratio))
        loss = nn.functional.binary_cross_entropy(pred, gt, reduction='none')
        positive_loss = loss * positive.float()
        negative_loss = loss * negative.float()
        # negative_loss, _ = torch.topk(negative_loss.view(-1).contiguous(), negative_count)
        negative_loss, _ = negative_loss.view(-1).topk(negative_count)

        balance_loss = (positive_loss.sum() + negative_loss.sum()) / (positive_count + negative_count + self.eps)

        if return_origin:
            return balance_loss, loss
        return balance_loss


class DiceLoss(nn.Module):
    '''
    Loss function from https://arxiv.org/abs/1707.03237,
    where iou computation is introduced heatmap manner to measure the
    diversity bwtween tow heatmaps.
    '''

    def __init__(self, eps=1e-6):
        super(DiceLoss, self).__init__()
        self.eps = eps

    def forward(self, pred: torch.Tensor, gt, mask, weights=None):
        '''
        pred: one or two heatmaps of shape (N, 1, H, W),
            the losses of tow heatmaps are added together.
        gt: (N, 1, H, W)
        mask: (N, H, W)
        '''
        return self._compute(pred, gt, mask, weights)

    def _compute(self, pred, gt, mask, weights):
        if pred.dim() == 4:
            pred = pred[:, 0, :, :]
            gt = gt[:, 0, :, :]
        assert pred.shape == gt.shape
        assert pred.shape == mask.shape
        if weights is not None:
            assert weights.shape == mask.shape
            mask = weights * mask
        intersection = (pred * gt * mask).sum()

        union = (pred * mask).sum() + (gt * mask).sum() + self.eps
        loss = 1 - 2.0 * intersection / union
        assert loss <= 1
        return loss


class MaskL1Loss(nn.Module):
    def __init__(self, eps=1e-6):
        super(MaskL1Loss, self).__init__()
        self.eps = eps

    def forward(self, pred: torch.Tensor, gt, mask):
        loss = (torch.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps)
        return loss