train_prior.py 5.51 KB
Newer Older
dongchy920's avatar
dongchy920 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
print("---------------- Train_2_Priortrainer.py --------------------")
import torch
from dalle2_pytorch import  DiffusionPriorNetwork, DiffusionPrior, OpenAIClipAdapter, DiffusionPriorTrainer
from dalle2_pytorch.tokenizer import SimpleTokenizer
import torchvision.transforms as T
from PIL import Image
import pickle
import os
import torch.utils.data as data
from torch.nn.utils.rnn import pad_sequence
from datasets import load_dataset, concatenate_datasets
from accelerate import Accelerator
import pdb

device = torch.device("cuda")

weight_dir = "./Priortrainer_weight_log"
os.makedirs(weight_dir, exist_ok=True)
num_epochs = 3
#batch_idx = 196491
checkp_interval = 35000
batch_size = 2

clip = OpenAIClipAdapter()

def xosc2ImageDataset(): 
    with open('../Dataset_dictionary.pkl', 'rb') as f:
        loaded_dict = pickle.load(f)
    dset = loaded_dict
    return dset

class TextDataset:
    def __init__(self, texts, batch_size=4, max_length=4500):
        self.texts = texts
        self.batch_size = batch_size
        self.max_length = max_length
    def __len__(self):
        return len(self.texts)
    def __iter__(self):
        self.current_index = 0  # Setze den Index zu Beginn der Iteration zurück
        return self
    def __next__(self):
        batch_texts = []
        for _ in range(self.batch_size):
            if self.current_index >= len(self.texts):
                raise StopIteration
            text = self.texts[self.current_index]
            #print(text[:90])
            text = text[:self.max_length]
            tensor = torch.tensor([ord(char) for char in text])
            batch_texts.append(tensor)
            self.current_index += 1
        padded_tensors = pad_sequence(batch_texts, batch_first=True)
        return padded_tensors

class ImageDataset:
    def __init__(self, image_paths, batch_size=4, image_size=(256, 256)):
        self.image_paths = image_paths
        self.batch_size = batch_size
        self.image_size = image_size
    def __len__(self):
        return len(self.image_paths)
    def __iter__(self):
        self.current_index = 0  # Setze den Index zu Beginn der Iteration zurück
        return self
    def __next__(self):
        batch_images = []
        for _ in range(self.batch_size):
            if self.current_index >= len(self.image_paths):
                raise StopIteration
            path = self.image_paths[self.current_index]
            normalized_path = path.replace('\\', '/')
            #print(normalized_path)
            image = self.load_image(normalized_path)
            batch_images.append(image)
            self.current_index += 1
        return torch.stack(batch_images, dim=0)
    def load_image(self, path):
        transform = T.Compose([
            T.Resize(self.image_size),
            T.ToTensor(),
        ])
        image = Image.open(path).convert("RGB")
        image = transform(image)
        return image

data = load_dataset('json',data_files='data.json')
image_list = data[f"train"]['image_path'] # list of captions
text_list = data[f"train"]['text']

text_dataset = TextDataset(text_list, batch_size=batch_size)
image_dataset = ImageDataset(image_list, batch_size=batch_size)

"""prior networks (with transformer)"""  #setup prior network, which contains an autoregressive transformer
prior_network = DiffusionPriorNetwork(
    dim = 512,
    depth = 6,
    dim_head = 64,
    heads = 8
).cuda()

diffusion_prior = DiffusionPrior(# diffusion prior network, which contains the CLIP and network (with transformer) above
    net = prior_network,
    clip = clip,
    timesteps = 1000,
    sample_timesteps = 64,
    cond_drop_prob = 0.2
).cuda()


accelerator = Accelerator()
prior_trainer = DiffusionPriorTrainer(
    diffusion_prior,
    accelerator=accelerator,
    lr = 3e-4,
    )

if os.listdir(weight_dir):
    # Load the last checkpoint with the highest epoch number
    last_epoch = max([int(name.split('_')[-2]) for name in os.listdir(weight_dir)])
    last_batch_idx = max([int(name.split('_')[-1].split('.')[0]) for name in os.listdir(weight_dir) if name.startswith(f'model_prior_{last_epoch}')])
    checkpoint_path = os.path.join(weight_dir, f'model_prior_{last_epoch}_{last_batch_idx}.pt')
    prior_trainer.load(checkpoint_path, overwrite_lr = True, strict=True)
    start_epoch = last_epoch + 1  # Start next epoch plus last one
    print("Checkpoint loaded")
else:
    start_epoch = 0  
    print("starting from zero")

# checkpoint_path = './model/prior.pth'
# prior_trainer.load(checkpoint_path, overwrite_lr = True, strict=True)

t = SimpleTokenizer()

num_batches = len(text_dataset) // batch_size  # Calculate the total number of batches
print("Numberofbatches",num_batches,"Length Dataset:", len(text_dataset))

for epoch in range(num_epochs):
    ep = epoch + start_epoch
    
    for idx in range(num_batches):# range(len(text_dataset)):
            text_loader = iter(text_dataset)
            image_loader = iter(image_dataset)
        #for _ in range(num_batches):
            batch_texts = next(text_loader)
            batch_images = next(image_loader)
            loss = prior_trainer(
                    batch_texts.to(device),
                    batch_images.to(device)
                    )
            prior_trainer.update() # Update the parameters of the model with the Optimizer
            if idx % 10 == 0:
                print(f"epoch {ep}, step {idx}, loss {loss}")
            if idx % (int(num_batches/10)) == 0: # Periodically save the model.
                prior_trainer.save(f'./Priortrainer_weight_log/model_prior_{ep}_{idx}.pt')
        
# do above for many steps ...