Commit cb0dff28 authored by dengjb's avatar dengjb
Browse files

Add create_datasets.py

parent dc8c4458
import os
import lmdb # install lmdb by "pip install lmdb"
import cv2
import numpy as np
def checkImageIsValid(imageBin):
if imageBin is None:
return False
imageBuf = np.frombuffer(imageBin, dtype=np.uint8)
try:
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
imgH, imgW = img.shape[0], img.shape[1]
if imgH * imgW == 0:
return False
return True
except:
return False
def writeCache(env, cache):
with env.begin(write=True) as txn:
for k, v in cache.items():
#print(k)
txn.put(k.encode(), v)
def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True):
"""
Create LMDB dataset for CRNN training.
ARGS:
outputPath : LMDB output path
imagePathList : list of image path
labelList : list of corresponding groundtruth texts
lexiconList : (optional) list of lexicon lists
checkValid : if true, check the validity of every image
"""
assert(len(imagePathList) == len(labelList))
nSamples = len(imagePathList)
env = lmdb.open(outputPath, map_size=1099511627776)
cache = {}
cnt = 1
#for i in range(100):
for i in range(nSamples):
imagePath = imagePathList[i]
label = labelList[i]
if not os.path.exists(imagePath):
print('%s does not exist' % imagePath)
continue
with open(imagePath, 'rb') as f:
imageBin = f.read()
if checkValid:
if not checkImageIsValid(imageBin):
print('%s is not a valid image' % imagePath)
continue
imageKey = 'image-%09d' % cnt
labelKey = 'label-%09d' % cnt
cache[imageKey] = imageBin
cache[labelKey] = label.encode()
if lexiconList:
lexiconKey = 'lexicon-%09d' % cnt
cache[lexiconKey] = ' '.join(lexiconList[i]).encode()
if cnt % 1000 == 0:
writeCache(env, cache)
cache = {}
print('Written %d / %d' % (cnt, nSamples))
cnt += 1
nSamples = cnt-1
cache['num-samples'] = str(nSamples).encode()
writeCache(env, cache)
print('Created dataset with %d samples' % nSamples)
def parse_labels(path):
labels, image_path = [], []
with open(path,'r') as f:
lines = f.readlines()
for line in lines:
image, label = line.strip("\n").split(' ')
labels.append(label)
image = "./90kDICT32px/" + image[1:]
image_path.append(image)
return labels, image_path
if __name__ == '__main__':
train_labels, train_images = parse_labels("90kDICT32px/annotation_train.txt")
with open("90kDICT32px/lexicon.txt",'r') as f:
lexicon_list = []
for line in f.readlines():
lexicon_list.append(line.strip("\n"))
#print(train_labels)
print("="*50)
#print(train_images)
createDataset("./output_dataset",train_images,train_labels)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment