Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
crnn_migraphx
Commits
3ca34c48
Commit
3ca34c48
authored
May 29, 2023
by
Your Name
Browse files
修改配置文件
parent
f56dcc58
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
227 deletions
+0
-227
Resource/Configuration.xml
Resource/Configuration.xml
+0
-227
No files found.
Resource/Configuration.xml
View file @
3ca34c48
<?xml version="1.0" encoding="GB2312"?>
<opencv_storage>
<!--分类器-->
<Classifier>
<ModelPath>
"../Resource/Models/Classifier/mnist-12.onnx"
</ModelPath>
<Scale>
0.003922
</Scale>
<!--缩放尺度-->
<MeanValue1>
0.0
</MeanValue1>
<!--均值-->
<MeanValue2>
0.0
</MeanValue2>
<MeanValue3>
0.0
</MeanValue3>
<SwapRB>
0
</SwapRB>
<Crop>
0
</Crop>
<UseInt8>
0
</UseInt8>
<!--是否使用int8,不支持-->
<UseFP16>
0
</UseFP16>
<!--是否使用FP16-->
<AddSoftmax>
1
</AddSoftmax>
<!--是否需要添加Softmax计算(如果onnx模型中包含了softmax,则设置为0)-->
</Classifier>
<!--超分辨率重建-->
<Espcn>
<ModelPath>
"../Resource/Models/Super_Resolution/super.onnx"
</ModelPath>
</Espcn>
<!--Unet-->
<Unet>
<ModelPath>
"../Resource/Models/Segmentation/unet_13_256.onnx"
</ModelPath>
</Unet>
<!--Bert-->
<Bert>
<ModelPath>
"../Resource/Models/NLP/Bert/bertsquad-10.onnx"
</ModelPath>
</Bert>
<!--GPT2-->
<GPT2>
<ModelPath>
"../Resource/Models/NLP/GPT2/GPT2_shici.onnx"
</ModelPath>
</GPT2>
<!--SSD检测器-->
<DetectorSSD>
<ModelPath>
"../Resource/Models/Detector/SSD/yufacedetectnet-open-v2.onnx"
</ModelPath>
<Scale>
1.0
</Scale>
<!--缩放尺度-->
<MeanValue1>
0
</MeanValue1>
<!--均值,顺序为bgr-->
<MeanValue2>
0
</MeanValue2>
<MeanValue3>
0
</MeanValue3>
<SwapRB>
0
</SwapRB>
<Crop>
0
</Crop>
<UseInt8>
0
</UseInt8>
<!--是否使用int8,不支持-->
<UseFP16>
0
</UseFP16>
<!--是否使用FP16-->
<!--////////////////// SSD网络结构参数 ////////////////// -->
<!--priorbox层的个数-->
<PriorBoxLayerNumber>
4
</PriorBoxLayerNumber>
<!--每个priorbox层的minisize和maxSize(需要与输出检测层顺序保持一致,下面涉及每个priorbox层参数的都需要保持顺序一致)-->
<MinSize11>
10
</MinSize11>
<MinSize12>
16
</MinSize12>
<MinSize13>
24
</MinSize13>
<MinSize21>
32
</MinSize21>
<MinSize22>
48
</MinSize22>
<MinSize31>
64
</MinSize31>
<MinSize32>
96
</MinSize32>
<MinSize41>
128
</MinSize41>
<MinSize42>
192
</MinSize42>
<MinSize43>
256
</MinSize43>
<!--每个priorbox层的Flip和Clip(使用0,1表示)-->
<Flip1>
0
</Flip1>
<Flip2>
0
</Flip2>
<Flip3>
0
</Flip3>
<Flip4>
0
</Flip4>
<Clip1>
0
</Clip1>
<Clip2>
0
</Clip2>
<Clip3>
0
</Clip3>
<Clip4>
0
</Clip4>
<!--每个priorbox层的宽高比(不包括1,且忽略flip,比如宽高比设置为0.3333和0.25且flip为true,则只需要写0.3333和0.25,如果宽高比只有1,则不用填写该项)-->
<!-- <AspectRatio11>0.3333</AspectRatio11>
<AspectRatio12>0.25</AspectRatio12>
<AspectRatio21>0.3333</AspectRatio21>
<AspectRatio22>0.25</AspectRatio22>
<AspectRatio31>0.3333</AspectRatio31>
<AspectRatio32>0.25</AspectRatio32>
<AspectRatio41>0.3333</AspectRatio41>
<AspectRatio42>0.25</AspectRatio42> -->
<!--每个priorbox层的step-->
<PriorBoxStepWidth1>
8
</PriorBoxStepWidth1>
<!--第一个priorbox层的step的width-->
<PriorBoxStepWidth2>
16
</PriorBoxStepWidth2>
<PriorBoxStepWidth3>
32
</PriorBoxStepWidth3>
<PriorBoxStepWidth4>
64
</PriorBoxStepWidth4>
<PriorBoxStepHeight1>
8
</PriorBoxStepHeight1>
<!--第一个priorbox层的step的height-->
<PriorBoxStepHeight2>
16
</PriorBoxStepHeight2>
<PriorBoxStepHeight3>
32
</PriorBoxStepHeight3>
<PriorBoxStepHeight4>
64
</PriorBoxStepHeight4>
<!--priorbox层中的offset-->
<Offset>
0.5
</Offset>
<!--DetectionOutput参数-->
<ClassNumber>
2
</ClassNumber>
<TopK>
400
</TopK>
<KeepTopK>
200
</KeepTopK>
<NMSThreshold>
0.3
</NMSThreshold>
<ConfidenceThreshold>
0.9
</ConfidenceThreshold>
</DetectorSSD>
<!--RetinaFace检测器-->
<DetectorRetinaFace>
<ModelPath>
"../Resource/Models/Detector/RetinaFace/mobilenet0.25_Final.onnx"
</ModelPath>
<Scale>
1.0
</Scale>
<!--缩放尺度-->
<MeanValue1>
104
</MeanValue1>
<!--均值,顺序为bgr-->
<MeanValue2>
117
</MeanValue2>
<MeanValue3>
123
</MeanValue3>
<SwapRB>
0
</SwapRB>
<Crop>
0
</Crop>
<UseInt8>
0
</UseInt8>
<!--是否使用int8,不支持-->
<UseFP16>
0
</UseFP16>
<!--是否使用FP16-->
<!--////////////////// RetinaFace检测器参数 ////////////////// -->
<!--priorbox层的个数-->
<PriorBoxLayerNumber>
3
</PriorBoxLayerNumber>
<!--每个priorbox层的minisize和maxSize(需要与输出检测层顺序保持一致,下面涉及每个priorbox层参数的都需要保持顺序一致)-->
<MinSize11>
16
</MinSize11>
<MinSize12>
32
</MinSize12>
<MinSize21>
64
</MinSize21>
<MinSize22>
128
</MinSize22>
<MinSize31>
256
</MinSize31>
<MinSize32>
512
</MinSize32>
<!--每个priorbox层的Flip和Clip(使用0,1表示)-->
<Flip1>
0
</Flip1>
<Flip2>
0
</Flip2>
<Flip3>
0
</Flip3>
<Clip1>
0
</Clip1>
<Clip2>
0
</Clip2>
<Clip3>
0
</Clip3>
<!--每个priorbox层的宽高比(由于RetinaFace只包含宽高比为1的anchor,所以这里不需要设置宽高比)-->
<!-- <AspectRatio11>0.3333</AspectRatio11>
<AspectRatio12>0.25</AspectRatio12>
<AspectRatio21>0.3333</AspectRatio21>
<AspectRatio22>0.25</AspectRatio22>
<AspectRatio31>0.3333</AspectRatio31>
<AspectRatio32>0.25</AspectRatio32>
<AspectRatio41>0.3333</AspectRatio41>
<AspectRatio42>0.25</AspectRatio42> -->
<!--每个priorbox层的step-->
<PriorBoxStepWidth1>
8
</PriorBoxStepWidth1>
<!--第一个priorbox层的step的width-->
<PriorBoxStepWidth2>
16
</PriorBoxStepWidth2>
<PriorBoxStepWidth3>
32
</PriorBoxStepWidth3>
<PriorBoxStepHeight1>
8
</PriorBoxStepHeight1>
<!--第一个priorbox层的step的height-->
<PriorBoxStepHeight2>
16
</PriorBoxStepHeight2>
<PriorBoxStepHeight3>
32
</PriorBoxStepHeight3>
<!--priorbox层中的offset-->
<Offset>
0.5
</Offset>
<!--DetectionOutput参数-->
<ClassNumber>
2
</ClassNumber>
<TopK>
400
</TopK>
<KeepTopK>
200
</KeepTopK>
<NMSThreshold>
0.3
</NMSThreshold>
<ConfidenceThreshold>
0.9
</ConfidenceThreshold>
</DetectorRetinaFace>
<!--YOLOV3检测器 -->
<DetectorYOLOV3>
<ModelPath>
"../Resource/Models/Detector/YOLOV3/yolov3-tiny.onnx"
</ModelPath>
<ClassNameFile>
"../Resource/Models/Detector/YOLOV3/coco.names"
</ClassNameFile>
<UseFP16>
0
</UseFP16>
<!--是否使用FP16-->
<NumberOfClasses>
80
</NumberOfClasses>
<!--类别数(不包括背景类),COCO:80,VOC:20-->
<ConfidenceThreshold>
0.2
</ConfidenceThreshold>
<NMSThreshold>
0.4
</NMSThreshold>
<ObjectThreshold>
0.4
</ObjectThreshold>
</DetectorYOLOV3>
<!--YOLOV5检测器 -->
<DetectorYOLOV5>
<ModelPath>
"../Resource/Models/Detector/YOLOV5/yolov5s.onnx"
</ModelPath>
<ClassNameFile>
"../Resource/Models/Detector/YOLOV5/coco.names"
</ClassNameFile>
<UseFP16>
0
</UseFP16>
<!--是否使用FP16-->
<NumberOfClasses>
80
</NumberOfClasses>
<!--类别数(不包括背景类),COCO:80,VOC:20-->
<ConfidenceThreshold>
0.25
</ConfidenceThreshold>
<NMSThreshold>
0.5
</NMSThreshold>
<ObjectThreshold>
0.5
</ObjectThreshold>
</DetectorYOLOV5>
<!--MTCNN检测器 -->
<DetectorMTCNN>
<PNet>
<ModelPath>
"../Resource/Models/Detector/MTCNN/PNet.onnx"
</ModelPath>
<MaxHeight>
512
</MaxHeight>
<MaxWidth>
512
</MaxWidth>
<ConfidenceThreshold>
0.90
</ConfidenceThreshold>
<UseFP16>
0
</UseFP16>
</PNet>
</DetectorMTCNN>
<!--YOLOV7检测器 -->
<DetectorYOLOV7>
<ModelPath>
"../Resource/Models/Detector/YOLOV7/yolov7-tiny.onnx"
</ModelPath>
<ClassNameFile>
"../Resource/Models/Detector/YOLOV7/coco.names"
</ClassNameFile>
<UseFP16>
0
</UseFP16>
<!--是否使用FP16-->
<NumberOfClasses>
80
</NumberOfClasses>
<!--类别数(不包括背景类),COCO:80,VOC:20-->
<ConfidenceThreshold>
0.25
</ConfidenceThreshold>
<NMSThreshold>
0.5
</NMSThreshold>
<ObjectThreshold>
0.5
</ObjectThreshold>
</DetectorYOLOV7>
<!--CRNN动态文本识别 -->
<CrnnDynamic>
<ModelPath>
"../Resource/Models/Ocr/CRNN/crnn_dynamic.onnx"
</ModelPath>
</CrnnDynamic>
<!--PaddleOCR车牌检测 -->
<OcrDB>
<ModelPath>
"../Resource/Models/PaddleOCR/VLPR/db.onnx"
</ModelPath>
<BinaryThreshold>
0.3
</BinaryThreshold>
<BoxThreshold>
0.5
</BoxThreshold>
<UnclipRatio>
1.6
</UnclipRatio>
<LimitSideLen>
2500
</LimitSideLen>
<ScoreMode>
"fast"
</ScoreMode>
</OcrDB>
<!--PaddleOCR车牌识别 -->
<OcrSVTR>
<ModelPath>
"../Resource/Models/PaddleOCR/VLPR/svtr.onnx"
</ModelPath>
<DictPath>
"../Resource/Models/PaddleOCR/VLPR/ppocr_keys_v1.txt"
</DictPath>
</OcrSVTR>
</opencv_storage>
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment