Configuration.xml 8 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
<?xml version="1.0" encoding="GB2312"?>
<opencv_storage>
	<!--分类器-->
	<Classifier>
		<ModelPath>"../Resource/Models/Classifier/mnist-12.onnx"</ModelPath>
        <Scale>0.003922</Scale><!--缩放尺度-->
        <MeanValue1>0.0</MeanValue1><!--均值-->
        <MeanValue2>0.0</MeanValue2>
        <MeanValue3>0.0</MeanValue3>
        <SwapRB>0</SwapRB>
        <Crop>0</Crop>
		<UseInt8>0</UseInt8><!--是否使用int8,不支持-->
		<UseFP16>0</UseFP16><!--是否使用FP16-->
		<AddSoftmax>1</AddSoftmax><!--是否需要添加Softmax计算(如果onnx模型中包含了softmax,则设置为0)-->
	</Classifier>

	<!--超分辨率重建-->
	<Espcn>
		<ModelPath>"../Resource/Models/Super_Resolution/super.onnx"</ModelPath>
	</Espcn>

	<!--Unet-->
	<Unet>
		<ModelPath>"../Resource/Models/Segmentation/unet_13_256.onnx"</ModelPath>
	</Unet>
	
	<!--Bert-->
	<Bert>
		<ModelPath>"../Resource/Models/NLP/Bert/bertsquad-10.onnx"</ModelPath>
	</Bert>

	<!--GPT2-->
	<GPT2>
		<ModelPath>"../Resource/Models/NLP/GPT2/GPT2_shici.onnx"</ModelPath>
	</GPT2>

	<!--SSD检测器-->
	<DetectorSSD>
		<ModelPath>"../Resource/Models/Detector/SSD/yufacedetectnet-open-v2.onnx"</ModelPath>
        <Scale>1.0</Scale><!--缩放尺度-->
		<MeanValue1>0</MeanValue1><!--均值,顺序为bgr-->
		<MeanValue2>0</MeanValue2>
		<MeanValue3>0</MeanValue3>
		<SwapRB>0</SwapRB>
		<Crop>0</Crop>
		<UseInt8>0</UseInt8><!--是否使用int8,不支持-->
		<UseFP16>0</UseFP16><!--是否使用FP16-->

		<!--////////////////// SSD网络结构参数 ////////////////// -->
		<!--priorbox层的个数-->
		<PriorBoxLayerNumber>4</PriorBoxLayerNumber>

		<!--每个priorbox层的minisize和maxSize(需要与输出检测层顺序保持一致,下面涉及每个priorbox层参数的都需要保持顺序一致)-->
		<MinSize11>10</MinSize11>
		<MinSize12>16</MinSize12>
		<MinSize13>24</MinSize13>
		<MinSize21>32</MinSize21>
		<MinSize22>48</MinSize22>
		<MinSize31>64</MinSize31>
		<MinSize32>96</MinSize32>
		<MinSize41>128</MinSize41>
		<MinSize42>192</MinSize42>
		<MinSize43>256</MinSize43>

		<!--每个priorbox层的Flip和Clip(使用0,1表示)-->
		<Flip1>0</Flip1>
		<Flip2>0</Flip2>
		<Flip3>0</Flip3>
		<Flip4>0</Flip4>

		<Clip1>0</Clip1>
		<Clip2>0</Clip2>
		<Clip3>0</Clip3>
		<Clip4>0</Clip4>

		<!--每个priorbox层的宽高比(不包括1,且忽略flip,比如宽高比设置为0.3333和0.25且flip为true,则只需要写0.3333和0.25,如果宽高比只有1,则不用填写该项)-->
		<!-- <AspectRatio11>0.3333</AspectRatio11>
		<AspectRatio12>0.25</AspectRatio12>
		<AspectRatio21>0.3333</AspectRatio21>
		<AspectRatio22>0.25</AspectRatio22>
		<AspectRatio31>0.3333</AspectRatio31>
		<AspectRatio32>0.25</AspectRatio32>
		<AspectRatio41>0.3333</AspectRatio41>
		<AspectRatio42>0.25</AspectRatio42> -->

		<!--每个priorbox层的step-->
		<PriorBoxStepWidth1>8</PriorBoxStepWidth1><!--第一个priorbox层的step的width-->
		<PriorBoxStepWidth2>16</PriorBoxStepWidth2>
		<PriorBoxStepWidth3>32</PriorBoxStepWidth3>
		<PriorBoxStepWidth4>64</PriorBoxStepWidth4>

		<PriorBoxStepHeight1>8</PriorBoxStepHeight1><!--第一个priorbox层的step的height-->
		<PriorBoxStepHeight2>16</PriorBoxStepHeight2>
		<PriorBoxStepHeight3>32</PriorBoxStepHeight3>
		<PriorBoxStepHeight4>64</PriorBoxStepHeight4>

		<!--priorbox层中的offset-->
		<Offset>0.5</Offset>

		<!--DetectionOutput参数-->
		<ClassNumber>2</ClassNumber>
		<TopK>400</TopK>
		<KeepTopK>200</KeepTopK>
		<NMSThreshold>0.3</NMSThreshold>
		<ConfidenceThreshold>0.9</ConfidenceThreshold>
	</DetectorSSD>

	<!--RetinaFace检测器-->
	<DetectorRetinaFace>
		<ModelPath>"../Resource/Models/Detector/RetinaFace/mobilenet0.25_Final.onnx"</ModelPath>
        <Scale>1.0</Scale><!--缩放尺度-->
		<MeanValue1>104</MeanValue1><!--均值,顺序为bgr-->
		<MeanValue2>117</MeanValue2>
		<MeanValue3>123</MeanValue3>
		<SwapRB>0</SwapRB>
		<Crop>0</Crop>
		<UseInt8>0</UseInt8><!--是否使用int8,不支持-->
		<UseFP16>0</UseFP16><!--是否使用FP16-->

		<!--////////////////// RetinaFace检测器参数 ////////////////// -->
		<!--priorbox层的个数-->
		<PriorBoxLayerNumber>3</PriorBoxLayerNumber>

		<!--每个priorbox层的minisize和maxSize(需要与输出检测层顺序保持一致,下面涉及每个priorbox层参数的都需要保持顺序一致)-->
		<MinSize11>16</MinSize11>
		<MinSize12>32</MinSize12>
		<MinSize21>64</MinSize21>
		<MinSize22>128</MinSize22>
		<MinSize31>256</MinSize31>
		<MinSize32>512</MinSize32>

		<!--每个priorbox层的Flip和Clip(使用0,1表示)-->
		<Flip1>0</Flip1>
		<Flip2>0</Flip2>
		<Flip3>0</Flip3>

		<Clip1>0</Clip1>
		<Clip2>0</Clip2>
		<Clip3>0</Clip3>

		<!--每个priorbox层的宽高比(由于RetinaFace只包含宽高比为1的anchor,所以这里不需要设置宽高比)-->
		<!-- <AspectRatio11>0.3333</AspectRatio11>
		<AspectRatio12>0.25</AspectRatio12>
		<AspectRatio21>0.3333</AspectRatio21>
		<AspectRatio22>0.25</AspectRatio22>
		<AspectRatio31>0.3333</AspectRatio31>
		<AspectRatio32>0.25</AspectRatio32>
		<AspectRatio41>0.3333</AspectRatio41>
		<AspectRatio42>0.25</AspectRatio42> -->

		<!--每个priorbox层的step-->
		<PriorBoxStepWidth1>8</PriorBoxStepWidth1><!--第一个priorbox层的step的width-->
		<PriorBoxStepWidth2>16</PriorBoxStepWidth2>
		<PriorBoxStepWidth3>32</PriorBoxStepWidth3>

		<PriorBoxStepHeight1>8</PriorBoxStepHeight1><!--第一个priorbox层的step的height-->
		<PriorBoxStepHeight2>16</PriorBoxStepHeight2>
		<PriorBoxStepHeight3>32</PriorBoxStepHeight3>

		<!--priorbox层中的offset-->
		<Offset>0.5</Offset>

		<!--DetectionOutput参数-->
		<ClassNumber>2</ClassNumber>
		<TopK>400</TopK>
		<KeepTopK>200</KeepTopK>
		<NMSThreshold>0.3</NMSThreshold>
		<ConfidenceThreshold>0.9</ConfidenceThreshold>
	</DetectorRetinaFace>

	<!--YOLOV3检测器 -->
	<DetectorYOLOV3>
		<ModelPath>"../Resource/Models/Detector/YOLOV3/yolov3-tiny.onnx"</ModelPath>
		<ClassNameFile>"../Resource/Models/Detector/YOLOV3/coco.names"</ClassNameFile>
		<UseFP16>0</UseFP16><!--是否使用FP16-->
		<NumberOfClasses>80</NumberOfClasses><!--类别数(不包括背景类),COCO:80,VOC:20-->
		<ConfidenceThreshold>0.2</ConfidenceThreshold>
		<NMSThreshold>0.4</NMSThreshold>
		<ObjectThreshold>0.4</ObjectThreshold>
	</DetectorYOLOV3>

	<!--YOLOV5检测器 -->
	<DetectorYOLOV5>
		<ModelPath>"../Resource/Models/Detector/YOLOV5/yolov5s.onnx"</ModelPath>
		<ClassNameFile>"../Resource/Models/Detector/YOLOV5/coco.names"</ClassNameFile>
		<UseFP16>0</UseFP16><!--是否使用FP16-->
		<NumberOfClasses>80</NumberOfClasses><!--类别数(不包括背景类),COCO:80,VOC:20-->
		<ConfidenceThreshold>0.25</ConfidenceThreshold>
		<NMSThreshold>0.5</NMSThreshold>
		<ObjectThreshold>0.5</ObjectThreshold>
	</DetectorYOLOV5>

	<!--MTCNN检测器 -->
	<DetectorMTCNN>
		<PNet>
    		<ModelPath>"../Resource/Models/Detector/MTCNN/PNet.onnx"</ModelPath>
			<MaxHeight>512</MaxHeight>
			<MaxWidth>512</MaxWidth>
			<ConfidenceThreshold>0.90</ConfidenceThreshold>
	    	<UseFP16>0</UseFP16>
  		</PNet>
	</DetectorMTCNN>

	<!--YOLOV7检测器 -->
	<DetectorYOLOV7>
		<ModelPath>"../Resource/Models/Detector/YOLOV7/yolov7-tiny.onnx"</ModelPath>
		<ClassNameFile>"../Resource/Models/Detector/YOLOV7/coco.names"</ClassNameFile>
		<UseFP16>0</UseFP16><!--是否使用FP16-->
		<NumberOfClasses>80</NumberOfClasses><!--类别数(不包括背景类),COCO:80,VOC:20-->
		<ConfidenceThreshold>0.25</ConfidenceThreshold>
		<NMSThreshold>0.5</NMSThreshold>
		<ObjectThreshold>0.5</ObjectThreshold>
	</DetectorYOLOV7>

	<!--CRNN动态文本识别 -->
	<CrnnDynamic>
		<ModelPath>"../Resource/Models/Ocr/CRNN/crnn_dynamic.onnx"</ModelPath>
	</CrnnDynamic>

	<!--PaddleOCR车牌检测 -->
	<OcrDB>
		<ModelPath>"../Resource/Models/PaddleOCR/VLPR/db.onnx"</ModelPath>
		<BinaryThreshold>0.3</BinaryThreshold>
		<BoxThreshold>0.5</BoxThreshold>
		<UnclipRatio>1.6</UnclipRatio>
		<LimitSideLen>2500</LimitSideLen>
		<ScoreMode>"fast"</ScoreMode>
	</OcrDB>

	<!--PaddleOCR车牌识别 -->
	<OcrSVTR>
		<ModelPath>"../Resource/Models/PaddleOCR/VLPR/svtr.onnx"</ModelPath>
		<DictPath>"../Resource/Models/PaddleOCR/VLPR/ppocr_keys_v1.txt"</DictPath>
	</OcrSVTR>
</opencv_storage>