Commit 8590ec24 authored by yaoht's avatar yaoht
Browse files

init commit

parent 38a732e1
# convert_onnx
examples of converting caffe, pytorch, tf, tflite, paddle model to onnx model. # onnx模型转换示例
\ No newline at end of file
将caffe, pytorch, tf, tflite, paddle 模型转成onnx模型的示例。
## caffe转onnx
caffe转onnx请参考[caffe/caffe2onnx/README.md](caffe/caffe2onnx/README.md)
## paddle转onnx
paddle转onnx请参考[paddle/README.md](paddle/README.md)
## tf以及tflite转onnx
tf以及tflite请参考[tf_tflite/README.md](tf_tflite/README.md)
## torch转onnx
torch转onnx请参考[torch/README.md](torch/README.md)
### https://raw.github.com/github/gitignore/2f75277037d172200d4a37621c1b9c3b9901dbd8/Global/JetBrains.gitignore
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
# User-specific stuff
.idea/**/workspace.xml
.idea/**/tasks.xml
.idea/**/usage.statistics.xml
.idea/**/dictionaries
.idea/**/shelf
# Generated files
.idea/**/contentModel.xml
# Sensitive or high-churn files
.idea/**/dataSources/
.idea/**/dataSources.ids
.idea/**/dataSources.local.xml
.idea/**/sqlDataSources.xml
.idea/**/dynamic.xml
.idea/**/uiDesigner.xml
.idea/**/dbnavigator.xml
# Gradle
.idea/**/gradle.xml
.idea/**/libraries
# Gradle and Maven with auto-import
# When using Gradle or Maven with auto-import, you should exclude module files,
# since they will be recreated, and may cause churn. Uncomment if using
# auto-import.
# .idea/artifacts
# .idea/compiler.xml
# .idea/jarRepositories.xml
# .idea/modules.xml
# .idea/*.iml
# .idea/modules
# *.iml
# *.ipr
# CMake
cmake-build-*/
# Mongo Explorer plugin
.idea/**/mongoSettings.xml
# File-based project format
*.iws
# IntelliJ
out/
# mpeltonen/sbt-idea plugin
.idea_modules/
# JIRA plugin
atlassian-ide-plugin.xml
# Cursive Clojure plugin
.idea/replstate.xml
# Crashlytics plugin (for Android Studio and IntelliJ)
com_crashlytics_export_strings.xml
crashlytics.properties
crashlytics-build.properties
fabric.properties
# Editor-based Rest Client
.idea/httpRequests
# Android studio 3.1+ serialized cache file
.idea/caches/build_file_checksums.ser
### https://raw.github.com/github/gitignore/2f75277037d172200d4a37621c1b9c3b9901dbd8/Python.gitignore
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
### https://raw.github.com/github/gitignore/2f75277037d172200d4a37621c1b9c3b9901dbd8/Global/macOS.gitignore
# General
.DS_Store
.AppleDouble
.LSOverride
# Icon must end with two \r
Icon
# Thumbnails
._*
# Files that might appear in the root of a volume
.DocumentRevisions-V100
.fseventsd
.Spotlight-V100
.TemporaryItems
.Trashes
.VolumeIcon.icns
.com.apple.timemachine.donotpresent
# Directories potentially created on remote AFP share
.AppleDB
.AppleDesktop
Network Trash Folder
Temporary Items
.apdisk
# Caffe 模型转换为 ONNX 模型
## 1. 环境搭建
- onnx(version == 1.6.0)
```shell script
pip3 install onnx==1.6.0
```
- numpy(version >= 1.17.0)
```shell script
pip3 install numpy
```
## 2. caffe2onnx 工具使用
- 进入工具目录
``` shell script
cd <tnn_root_path>/tools/caffe2onnx/
```
- 模型下载
示例caffe模型[下载地址](https://github.com/GammaLab-HPC/dawnbench_inference_imagenet/tree/master/model),prototxt和caffemodel均需要下载。
- 使用转换工具
```shell script
python3 convert2onnx.py ./resnet50.prototxt ./resnet50.caffemodel -o ./test.onnx
```
- 转换工具脚本参数说明
```text
usage: caffe2onnx.py [-h] [-o ONNX_FILE] proto_file caffe_model_file
convert caffe model to onnx
positional arguments:
proto_file the path for prototxt file, the file name must end with .prototxt
caffe_model_file the path for caffe model file, the file name must end with .caffemodel!
options:
-h, --help show this help message and exit
-o ONNX_FILE the path for generate onnx file
```
\ No newline at end of file
from src.load_save_model import LoadCaffeModel, SaveOnnxModel
from src.caffe2onnx import Caffe2Onnx
from src.args_parser import parse_args
from src.utils import is_ssd_model
def main(args):
caffe_graph_path = args.proto_file
caffe_params_path = args.caffe_model_file
pos_s = caffe_graph_path.rfind("/")
if pos_s == -1:
pos_s = 0
pos_dot = caffe_graph_path.rfind(".")
onnx_name = caffe_graph_path[pos_s+1:pos_dot]
save_path = caffe_graph_path[0:pos_dot] + '.onnx'
if args.onnx_file is not None:
save_path = args.onnx_file
graph, params = LoadCaffeModel(caffe_graph_path,caffe_params_path)
print('2. 开始进行模型转换')
c2o = Caffe2Onnx(graph, params, onnx_name)
print('3. 创建 onnx 模型')
onnx_model = c2o.createOnnxModel()
print('4. 保存 onnx 模型')
# is_ssd = is_ssd_model(caffe_graph_path)
# if is_ssd:
SaveOnnxModel(onnx_model, save_path, need_polish=False)
# else:
# SaveOnnxModel(onnx_model, save_path, need_polish=True)
if __name__ == '__main__':
args = parse_args()
main(args)
# onnx version
| onnx | 1.2.2 | 1.6.0 | compatible |
|-----------------------|------------------------------------|--------------------------------------------------|--------------|
| AveragePool | - | attributes(ceil\_mode) | yes |
| BatchNormalization | spatial | spatial(delete) (not use) | yes |
| Clip | attributes(min, max) | inputs(min, max) | yes(support) |
| Concat | - | - | yes |
| Conv | - | - | yes |
| ConvTranspose | - | - | yes |
| DepthToSpace | attributes(blocksize) | attributes(blocksize,mode) | yes(support) |
| Div | - | - | yes |
| Exp | - | - | yes |
| Expand | not support | support | yes |
| Gemm | - | - | yes |
| GlobalAveragePool | - | - | yes |
| GlobalMaxPool | - | - | yes |
| InstanceNormalization | - | - | yes |
| LeakyRelu | - | - | yes |
| MaxPool | - | attributes(ceil\_mode, dilations,storage\_order) | ? |
| Mul | - | - | yes |
| PRelu | - | - | yes |
| Pad | attributes(pads, value) | inputs(pads, constant_value) | yes(support) |
| ReduceL2 | - | - | yes |
| ReduceMean | - | - | yes |
| ReduceSum | - | - | yes |
| Relu | - | - | yes |
| Reshape | - | - | yes |
| Slice | attributes(starts,ends,axes,steps) | inputs(starts,ends,axes,steps) | yes(support) |
| Softmax | - | - | yes |
| Softplus | - | - | yes |
| Split | - | - | yes |
| Sub | - | - | yes |
| Tanh | - | - | yes |
| Tile | - | - | yes |
| Transpose | - | - | yes |
| Upsample | Upsample | deprecated(弃用了), 使用 Resize 替代 | yes |
syntax = "proto2";
package caffe;
// Specifies the shape (dimensions) of a Blob.
message BlobShape {
repeated int64 dim = 1 [packed = true];
}
message BlobProto {
optional BlobShape shape = 7;
repeated float data = 5 [packed = true];
repeated float diff = 6 [packed = true];
repeated double double_data = 8 [packed = true];
repeated double double_diff = 9 [packed = true];
// 4D dimensions -- deprecated. Use "shape" instead.
optional int32 num = 1 [default = 0];
optional int32 channels = 2 [default = 0];
optional int32 height = 3 [default = 0];
optional int32 width = 4 [default = 0];
}
// The BlobProtoVector is simply a way to pass multiple blobproto instances
// around.
message BlobProtoVector {
repeated BlobProto blobs = 1;
}
message Datum {
optional int32 channels = 1;
optional int32 height = 2;
optional int32 width = 3;
// the actual image data, in bytes
optional bytes data = 4;
optional int32 label = 5;
// Optionally, the datum could also hold float data.
repeated float float_data = 6;
// If true data contains an encoded image that need to be decoded
optional bool encoded = 7 [default = false];
}
message FillerParameter {
// The filler type.
optional string type = 1 [default = 'constant'];
optional float value = 2 [default = 0]; // the value in constant filler
optional float min = 3 [default = 0]; // the min value in uniform filler
optional float max = 4 [default = 1]; // the max value in uniform filler
optional float mean = 5 [default = 0]; // the mean value in Gaussian filler
optional float std = 6 [default = 1]; // the std value in Gaussian filler
// The expected number of non-zero output weights for a given input in
// Gaussian filler -- the default -1 means don't perform sparsification.
optional int32 sparse = 7 [default = -1];
// Normalize the filler variance by fan_in, fan_out, or their average.
// Applies to 'xavier' and 'msra' fillers.
enum VarianceNorm {
FAN_IN = 0;
FAN_OUT = 1;
AVERAGE = 2;
}
optional VarianceNorm variance_norm = 8 [default = FAN_IN];
}
message NetParameter {
optional string name = 1; // consider giving the network a name
// DEPRECATED. See InputParameter. The input blobs to the network.
repeated string input = 3;
// DEPRECATED. See InputParameter. The shape of the input blobs.
repeated BlobShape input_shape = 8;
// 4D input dimensions -- deprecated. Use "input_shape" instead.
// If specified, for each input blob there should be four
// values specifying the num, channels, height and width of the input blob.
// Thus, there should be a total of (4 * #input) numbers.
repeated int32 input_dim = 4;
// Whether the network will force every layer to carry out backward operation.
// If set False, then whether to carry out backward is determined
// automatically according to the net structure and learning rates.
optional bool force_backward = 5 [default = false];
// The current "state" of the network, including the phase, level, and stage.
// Some layers may be included/excluded depending on this state and the states
// specified in the layers' include and exclude fields.
optional NetState state = 6;
// Print debugging information about results while running Net::Forward,
// Net::Backward, and Net::Update.
optional bool debug_info = 7 [default = false];
// The layers that make up the net. Each of their configurations, including
// connectivity and behavior, is specified as a LayerParameter.
repeated LayerParameter layer = 100; // ID 100 so layers are printed last.
// DEPRECATED: use 'layer' instead.
repeated V1LayerParameter layers = 2;
}
// NOTE
// Update the next available ID when you add a new SolverParameter field.
//
// SolverParameter next available ID: 43 (last added: weights)
message SolverParameter {
//////////////////////////////////////////////////////////////////////////////
// Specifying the train and test networks
//
// Exactly one train net must be specified using one of the following fields:
// train_net_param, train_net, net_param, net
// One or more test nets may be specified using any of the following fields:
// test_net_param, test_net, net_param, net
// If more than one test net field is specified (e.g., both net and
// test_net are specified), they will be evaluated in the field order given
// above: (1) test_net_param, (2) test_net, (3) net_param/net.
// A test_iter must be specified for each test_net.
// A test_level and/or a test_stage may also be specified for each test_net.
//////////////////////////////////////////////////////////////////////////////
// Proto filename for the train net, possibly combined with one or more
// test nets.
optional string net = 24;
// Inline train net param, possibly combined with one or more test nets.
optional NetParameter net_param = 25;
optional string train_net = 1; // Proto filename for the train net.
repeated string test_net = 2; // Proto filenames for the test nets.
optional NetParameter train_net_param = 21; // Inline train net params.
repeated NetParameter test_net_param = 22; // Inline test net params.
// The states for the train/test nets. Must be unspecified or
// specified once per net.
//
// By default, train_state will have phase = TRAIN,
// and all test_state's will have phase = TEST.
// Other defaults are set according to the NetState defaults.
optional NetState train_state = 26;
repeated NetState test_state = 27;
// The number of iterations for each test net.
repeated int32 test_iter = 3;
// The number of iterations between two testing phases.
optional int32 test_interval = 4 [default = 0];
optional bool test_compute_loss = 19 [default = false];
// If true, run an initial test pass before the first iteration,
// ensuring memory availability and printing the starting value of the loss.
optional bool test_initialization = 32 [default = true];
optional float base_lr = 5; // The base learning rate
// the number of iterations between displaying info. If display = 0, no info
// will be displayed.
optional int32 display = 6;
// Display the loss averaged over the last average_loss iterations
optional int32 average_loss = 33 [default = 1];
optional int32 max_iter = 7; // the maximum number of iterations
// accumulate gradients over `iter_size` x `batch_size` instances
optional int32 iter_size = 36 [default = 1];
// The learning rate decay policy. The currently implemented learning rate
// policies are as follows:
// - fixed: always return base_lr.
// - step: return base_lr * gamma ^ (floor(iter / step))
// - exp: return base_lr * gamma ^ iter
// - inv: return base_lr * (1 + gamma * iter) ^ (- power)
// - multistep: similar to step but it allows non uniform steps defined by
// stepvalue
// - poly: the effective learning rate follows a polynomial decay, to be
// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
// - sigmoid: the effective learning rate follows a sigmod decay
// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
//
// where base_lr, max_iter, gamma, step, stepvalue and power are defined
// in the solver parameter protocol buffer, and iter is the current iteration.
optional string lr_policy = 8;
optional float gamma = 9; // The parameter to compute the learning rate.
optional float power = 10; // The parameter to compute the learning rate.
optional float momentum = 11; // The momentum value.
optional float weight_decay = 12; // The weight decay.
// regularization types supported: L1 and L2
// controlled by weight_decay
optional string regularization_type = 29 [default = "L2"];
// the stepsize for learning rate policy "step"
optional int32 stepsize = 13;
// the stepsize for learning rate policy "multistep"
repeated int32 stepvalue = 34;
// Set clip_gradients to >= 0 to clip parameter gradients to that L2 norm,
// whenever their actual L2 norm is larger.
optional float clip_gradients = 35 [default = -1];
optional int32 snapshot = 14 [default = 0]; // The snapshot interval
// The prefix for the snapshot.
// If not set then is replaced by prototxt file path without extension.
// If is set to directory then is augmented by prototxt file name
// without extention.
optional string snapshot_prefix = 15;
// whether to snapshot diff in the results or not. Snapshotting diff will help
// debugging but the final protocol buffer size will be much larger.
optional bool snapshot_diff = 16 [default = false];
enum SnapshotFormat {
HDF5 = 0;
BINARYPROTO = 1;
}
optional SnapshotFormat snapshot_format = 37 [default = BINARYPROTO];
// the mode solver will use: 0 for CPU and 1 for GPU. Use GPU in default.
enum SolverMode {
CPU = 0;
GPU = 1;
}
optional SolverMode solver_mode = 17 [default = GPU];
// the device_id will that be used in GPU mode. Use device_id = 0 in default.
optional int32 device_id = 18 [default = 0];
// If non-negative, the seed with which the Solver will initialize the Caffe
// random number generator -- useful for reproducible results. Otherwise,
// (and by default) initialize using a seed derived from the system clock.
optional int64 random_seed = 20 [default = -1];
// type of the solver
optional string type = 40 [default = "SGD"];
// numerical stability for RMSProp, AdaGrad and AdaDelta and Adam
optional float delta = 31 [default = 1e-8];
// parameters for the Adam solver
optional float momentum2 = 39 [default = 0.999];
// RMSProp decay value
// MeanSquare(t) = rms_decay*MeanSquare(t-1) + (1-rms_decay)*SquareGradient(t)
optional float rms_decay = 38 [default = 0.99];
// If true, print information about the state of the net that may help with
// debugging learning problems.
optional bool debug_info = 23 [default = false];
// If false, don't save a snapshot after training finishes.
optional bool snapshot_after_train = 28 [default = true];
// DEPRECATED: old solver enum types, use string instead
enum SolverType {
SGD = 0;
NESTEROV = 1;
ADAGRAD = 2;
RMSPROP = 3;
ADADELTA = 4;
ADAM = 5;
}
// DEPRECATED: use type instead of solver_type
optional SolverType solver_type = 30 [default = SGD];
// Overlap compute and communication for data parallel training
optional bool layer_wise_reduce = 41 [default = true];
// Path to caffemodel file(s) with pretrained weights to initialize finetuning.
// Tha same as command line --weights parameter for caffe train command.
// If command line --weights parameter is specified, it has higher priority
// and overwrites this one(s).
// If --snapshot command line parameter is specified, this one(s) are ignored.
// If several model files are expected, they can be listed in a one
// weights parameter separated by ',' (like in a command string) or
// in repeated weights parameters separately.
repeated string weights = 42;
}
// A message that stores the solver snapshots
message SolverState {
optional int32 iter = 1; // The current iteration
optional string learned_net = 2; // The file that stores the learned net.
repeated BlobProto history = 3; // The history for sgd solvers
optional int32 current_step = 4 [default = 0]; // The current step for learning rate
}
enum Phase {
TRAIN = 0;
TEST = 1;
}
message NetState {
optional Phase phase = 1 [default = TEST];
optional int32 level = 2 [default = 0];
repeated string stage = 3;
}
message NetStateRule {
// Set phase to require the NetState have a particular phase (TRAIN or TEST)
// to meet this rule.
optional Phase phase = 1;
// Set the minimum and/or maximum levels in which the layer should be used.
// Leave undefined to meet the rule regardless of level.
optional int32 min_level = 2;
optional int32 max_level = 3;
// Customizable sets of stages to include or exclude.
// The net must have ALL of the specified stages and NONE of the specified
// "not_stage"s to meet the rule.
// (Use multiple NetStateRules to specify conjunctions of stages.)
repeated string stage = 4;
repeated string not_stage = 5;
}
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
message ParamSpec {
// The names of the parameter blobs -- useful for sharing parameters among
// layers, but never required otherwise. To share a parameter between two
// layers, give it a (non-empty) name.
optional string name = 1;
// Whether to require shared weights to have the same shape, or just the same
// count -- defaults to STRICT if unspecified.
optional DimCheckMode share_mode = 2;
enum DimCheckMode {
// STRICT (default) requires that num, channels, height, width each match.
STRICT = 0;
// PERMISSIVE requires only the count (num*channels*height*width) to match.
PERMISSIVE = 1;
}
// The multiplier on the global learning rate for this parameter.
optional float lr_mult = 3 [default = 1.0];
// The multiplier on the global weight decay for this parameter.
optional float decay_mult = 4 [default = 1.0];
}
// NOTE
// Update the next available ID when you add a new LayerParameter field.
//
// LayerParameter next available layer-specific ID: 149 (last added: clip_param)
message LayerParameter {
optional string name = 1; // the layer name
optional string type = 2; // the layer type
repeated string bottom = 3; // the name of each bottom blob
repeated string top = 4; // the name of each top blob
// The train / test phase for computation.
optional Phase phase = 10;
// The amount of weight to assign each top blob in the objective.
// Each layer assigns a default value, usually of either 0 or 1,
// to each top blob.
repeated float loss_weight = 5;
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
repeated ParamSpec param = 6;
// The blobs containing the numeric parameters of the layer.
repeated BlobProto blobs = 7;
// Specifies whether to backpropagate to each bottom. If unspecified,
// Caffe will automatically infer whether each input needs backpropagation
// to compute parameter gradients. If set to true for some inputs,
// backpropagation to those inputs is forced; if set false for some inputs,
// backpropagation to those inputs is skipped.
//
// The size must be either 0 or equal to the number of bottoms.
repeated bool propagate_down = 11;
// Rules controlling whether and when a layer is included in the network,
// based on the current NetState. You may specify a non-zero number of rules
// to include OR exclude, but not both. If no include or exclude rules are
// specified, the layer is always included. If the current NetState meets
// ANY (i.e., one or more) of the specified rules, the layer is
// included/excluded.
repeated NetStateRule include = 8;
repeated NetStateRule exclude = 9;
// Parameters for data pre-processing.
optional TransformationParameter transform_param = 100;
// Parameters shared by loss layers.
optional LossParameter loss_param = 101;
// Layer type-specific parameters.
//
// Note: certain layers may have more than one computational engine
// for their implementation. These layers include an Engine type and
// engine parameter for selecting the implementation.
// The default for the engine is set by the ENGINE switch at compile-time.
optional AccuracyParameter accuracy_param = 102;
optional ArgMaxParameter argmax_param = 103;
optional BatchNormParameter batch_norm_param = 139;
optional BiasParameter bias_param = 141;
optional ClipParameter clip_param = 148;
optional ConcatParameter concat_param = 104;
optional ContrastiveLossParameter contrastive_loss_param = 105;
optional ConvolutionParameter convolution_param = 106;
optional UpsampleParameter upsample_param = 149;
optional CropParameter crop_param = 144;
optional DataParameter data_param = 107;
optional DropoutParameter dropout_param = 108;
optional DummyDataParameter dummy_data_param = 109;
optional EltwiseParameter eltwise_param = 110;
optional ELUParameter elu_param = 140;
optional EmbedParameter embed_param = 137;
optional ExpParameter exp_param = 111;
optional FlattenParameter flatten_param = 135;
optional HDF5DataParameter hdf5_data_param = 112;
optional HDF5OutputParameter hdf5_output_param = 113;
optional HingeLossParameter hinge_loss_param = 114;
optional ImageDataParameter image_data_param = 115;
optional InfogainLossParameter infogain_loss_param = 116;
optional InnerProductParameter inner_product_param = 117;
optional InputParameter input_param = 143;
optional LogParameter log_param = 134;
optional LRNParameter lrn_param = 118;
optional MemoryDataParameter memory_data_param = 119;
optional MVNParameter mvn_param = 120;
optional ParameterParameter parameter_param = 145;
optional PoolingParameter pooling_param = 121;
optional PowerParameter power_param = 122;
optional PReLUParameter prelu_param = 131;
optional PythonParameter python_param = 130;
optional RecurrentParameter recurrent_param = 146;
optional ReductionParameter reduction_param = 136;
optional ReLUParameter relu_param = 123;
optional ReshapeParameter reshape_param = 133;
optional ScaleParameter scale_param = 142;
optional SigmoidParameter sigmoid_param = 124;
optional SoftmaxParameter softmax_param = 125;
optional SPPParameter spp_param = 132;
optional SliceParameter slice_param = 126;
optional SwishParameter swish_param = 147;
optional TanHParameter tanh_param = 127;
optional ThresholdParameter threshold_param = 128;
optional TileParameter tile_param = 138;
optional WindowDataParameter window_data_param = 129;
optional InterpParameter interp_param = 166;
optional ShuffleChannelParameter shuffle_channel_param = 164;
optional PermuteParameter permute_param = 202;
optional PriorBoxParameter prior_box_param = 203;
optional DetectionOutputParameter detection_output_param = 204;
optional DetectionEvaluateParameter detection_evaluate_param = 205;
optional NormalizeParameter norm_param = 206;
optional AxpyParameter axpy_param = 151;
optional ReLU6Parameter relu6_param = 100000;
}
message ShuffleChannelParameter {
optional uint32 group = 1[default = 1]; // The number of group
}
// Message that stores parameters used to apply transformation
// to the data layer's data
message TransformationParameter {
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional float scale = 1 [default = 1];
// Specify if we want to randomly mirror data.
optional bool mirror = 2 [default = false];
// Specify if we would like to randomly crop an image.
optional uint32 crop_size = 3 [default = 0];
// mean_file and mean_value cannot be specified at the same time
optional string mean_file = 4;
// if specified can be repeated once (would subtract it from all the channels)
// or can be repeated the same number of times as channels
// (would subtract them from the corresponding channel)
repeated float mean_value = 5;
// Force the decoded image to have 3 color channels.
optional bool force_color = 6 [default = false];
// Force the decoded image to have 1 color channels.
optional bool force_gray = 7 [default = false];
}
// Message that stores parameters shared by loss layers
message LossParameter {
// If specified, ignore instances with the given label.
optional int32 ignore_label = 1;
// How to normalize the loss for loss layers that aggregate across batches,
// spatial dimensions, or other dimensions. Currently only implemented in
// SoftmaxWithLoss and SigmoidCrossEntropyLoss layers.
enum NormalizationMode {
// Divide by the number of examples in the batch times spatial dimensions.
// Outputs that receive the ignore label will NOT be ignored in computing
// the normalization factor.
FULL = 0;
// Divide by the total number of output locations that do not take the
// ignore_label. If ignore_label is not set, this behaves like FULL.
VALID = 1;
// Divide by the batch size.
BATCH_SIZE = 2;
// Do not normalize the loss.
NONE = 3;
}
// For historical reasons, the default normalization for
// SigmoidCrossEntropyLoss is BATCH_SIZE and *not* VALID.
optional NormalizationMode normalization = 3 [default = VALID];
// Deprecated. Ignored if normalization is specified. If normalization
// is not specified, then setting this to false will be equivalent to
// normalization = BATCH_SIZE to be consistent with previous behavior.
optional bool normalize = 2;
}
// Messages that store parameters used by individual layer types follow, in
// alphabetical order.
message AccuracyParameter {
// When computing accuracy, count as correct by comparing the true label to
// the top k scoring classes. By default, only compare to the top scoring
// class (i.e. argmax).
optional uint32 top_k = 1 [default = 1];
// The "label" axis of the prediction blob, whose argmax corresponds to the
// predicted label -- may be negative to index from the end (e.g., -1 for the
// last axis). For example, if axis == 1 and the predictions are
// (N x C x H x W), the label blob is expected to contain N*H*W ground truth
// labels with integer values in {0, 1, ..., C-1}.
optional int32 axis = 2 [default = 1];
// If specified, ignore instances with the given label.
optional int32 ignore_label = 3;
}
message ArgMaxParameter {
// If true produce pairs (argmax, maxval)
optional bool out_max_val = 1 [default = false];
optional uint32 top_k = 2 [default = 1];
// The axis along which to maximise -- may be negative to index from the
// end (e.g., -1 for the last axis).
// By default ArgMaxLayer maximizes over the flattened trailing dimensions
// for each index of the first / num dimension.
optional int32 axis = 3;
}
// Message that stores parameters used by ClipLayer
message ClipParameter {
required float min = 1;
required float max = 2;
}
message ConcatParameter {
// The axis along which to concatenate -- may be negative to index from the
// end (e.g., -1 for the last axis). Other axes must have the
// same dimension for all the bottom blobs.
// By default, ConcatLayer concatenates blobs along the "channels" axis (1).
optional int32 axis = 2 [default = 1];
// DEPRECATED: alias for "axis" -- does not support negative indexing.
optional uint32 concat_dim = 1 [default = 1];
}
message BatchNormParameter {
// If false, normalization is performed over the current mini-batch
// and global statistics are accumulated (but not yet used) by a moving
// average.
// If true, those accumulated mean and variance values are used for the
// normalization.
// By default, it is set to false when the network is in the training
// phase and true when the network is in the testing phase.
optional bool use_global_stats = 1;
// What fraction of the moving average remains each iteration?
// Smaller values make the moving average decay faster, giving more
// weight to the recent values.
// Each iteration updates the moving average @f$S_{t-1}@f$ with the
// current mean @f$ Y_t @f$ by
// @f$ S_t = (1-\beta)Y_t + \beta \cdot S_{t-1} @f$, where @f$ \beta @f$
// is the moving_average_fraction parameter.
optional float moving_average_fraction = 2 [default = .999];
// Small value to add to the variance estimate so that we don't divide by
// zero.
optional float eps = 3 [default = 1e-5];
}
message BiasParameter {
// The first axis of bottom[0] (the first input Blob) along which to apply
// bottom[1] (the second input Blob). May be negative to index from the end
// (e.g., -1 for the last axis).
//
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output
// top[0] will have the same shape, and bottom[1] may have any of the
// following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
// Furthermore, bottom[1] may have the empty shape (regardless of the value of
// "axis") -- a scalar bias.
optional int32 axis = 1 [default = 1];
// (num_axes is ignored unless just one bottom is given and the bias is
// a learned parameter of the layer. Otherwise, num_axes is determined by the
// number of axes by the second bottom.)
// The number of axes of the input (bottom[0]) covered by the bias
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
// Set num_axes := 0, to add a zero-axis Blob: a scalar.
optional int32 num_axes = 2 [default = 1];
// (filler is ignored unless just one bottom is given and the bias is
// a learned parameter of the layer.)
// The initialization for the learned bias parameter.
// Default is the zero (0) initialization, resulting in the BiasLayer
// initially performing the identity operation.
optional FillerParameter filler = 3;
}
message ContrastiveLossParameter {
// margin for dissimilar pair
optional float margin = 1 [default = 1.0];
// The first implementation of this cost did not exactly match the cost of
// Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.
// legacy_version = false (the default) uses (margin - d)^2 as proposed in the
// Hadsell paper. New models should probably use this version.
// legacy_version = true uses (margin - d^2). This is kept to support /
// reproduce existing models and results
optional bool legacy_version = 2 [default = false];
}
message UpsampleParameter{
optional float scale = 1 [default = 0];
}
message ConvolutionParameter {
optional uint32 num_output = 1; // The number of outputs for the layer
optional bool bias_term = 2 [default = true]; // whether to have bias terms
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in all spatial dimensions, or once per spatial dimension.
repeated uint32 pad = 3; // The padding size; defaults to 0
repeated uint32 kernel_size = 4; // The kernel size
repeated uint32 stride = 6; // The stride; defaults to 1
// Factor used to dilate the kernel, (implicitly) zero-filling the resulting
// holes. (Kernel dilation is sometimes referred to by its use in the
// algorithme à trous from Holschneider et al. 1987.)
repeated uint32 dilation = 18; // The dilation; defaults to 1
// For 2D convolution only, the *_h and *_w versions may also be used to
// specify both spatial dimensions.
optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)
optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)
optional uint32 kernel_h = 11; // The kernel height (2D only)
optional uint32 kernel_w = 12; // The kernel width (2D only)
optional uint32 stride_h = 13; // The stride height (2D only)
optional uint32 stride_w = 14; // The stride width (2D only)
optional uint32 group = 5 [default = 1]; // The group size for group conv
optional FillerParameter weight_filler = 7; // The filler for the weight
optional FillerParameter bias_filler = 8; // The filler for the bias
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 15 [default = DEFAULT];
// The axis to interpret as "channels" when performing convolution.
// Preceding dimensions are treated as independent inputs;
// succeeding dimensions are treated as "spatial".
// With (N, C, H, W) inputs, and axis == 1 (the default), we perform
// N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
// groups g>1) filters across the spatial axes (H, W) of the input.
// With (N, C, D, H, W) inputs, and axis == 1, we perform
// N independent 3D convolutions, sliding (C/g)-channels
// filters across the spatial axes (D, H, W) of the input.
optional int32 axis = 16 [default = 1];
// Whether to force use of the general ND convolution, even if a specific
// implementation for blobs of the appropriate number of spatial dimensions
// is available. (Currently, there is only a 2D-specific convolution
// implementation; for input blobs with num_axes != 2, this option is
// ignored and the ND implementation will be used.)
optional bool force_nd_im2col = 17 [default = false];
}
message CropParameter {
// To crop, elements of the first bottom are selected to fit the dimensions
// of the second, reference bottom. The crop is configured by
// - the crop `axis` to pick the dimensions for cropping
// - the crop `offset` to set the shift for all/each dimension
// to align the cropped bottom with the reference bottom.
// All dimensions up to but excluding `axis` are preserved, while
// the dimensions including and trailing `axis` are cropped.
// If only one `offset` is set, then all dimensions are offset by this amount.
// Otherwise, the number of offsets must equal the number of cropped axes to
// shift the crop in each dimension accordingly.
// Note: standard dimensions are N,C,H,W so the default is a spatial crop,
// and `axis` may be negative to index from the end (e.g., -1 for the last
// axis).
optional int32 axis = 1 [default = 2];
repeated uint32 offset = 2;
}
message DataParameter {
enum DB {
LEVELDB = 0;
LMDB = 1;
}
// Specify the data source.
optional string source = 1;
// Specify the batch size.
optional uint32 batch_size = 4;
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
// DEPRECATED. Each solver accesses a different subset of the database.
optional uint32 rand_skip = 7 [default = 0];
optional DB backend = 8 [default = LEVELDB];
// DEPRECATED. See TransformationParameter. For data pre-processing, we can do
// simple scaling and subtracting the data mean, if provided. Note that the
// mean subtraction is always carried out before scaling.
optional float scale = 2 [default = 1];
optional string mean_file = 3;
// DEPRECATED. See TransformationParameter. Specify if we would like to randomly
// crop an image.
optional uint32 crop_size = 5 [default = 0];
// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
// data.
optional bool mirror = 6 [default = false];
// Force the encoded image to have 3 color channels
optional bool force_encoded_color = 9 [default = false];
// Prefetch queue (Increase if data feeding bandwidth varies, within the
// limit of device memory for GPU training)
optional uint32 prefetch = 10 [default = 4];
}
message DropoutParameter {
optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio
}
// DummyDataLayer fills any number of arbitrarily shaped blobs with random
// (or constant) data generated by "Fillers" (see "message FillerParameter").
message DummyDataParameter {
// This layer produces N >= 1 top blobs. DummyDataParameter must specify 1 or N
// shape fields, and 0, 1 or N data_fillers.
//
// If 0 data_fillers are specified, ConstantFiller with a value of 0 is used.
// If 1 data_filler is specified, it is applied to all top blobs. If N are
// specified, the ith is applied to the ith top blob.
repeated FillerParameter data_filler = 1;
repeated BlobShape shape = 6;
// 4D dimensions -- deprecated. Use "shape" instead.
repeated uint32 num = 2;
repeated uint32 channels = 3;
repeated uint32 height = 4;
repeated uint32 width = 5;
}
message EltwiseParameter {
enum EltwiseOp {
PROD = 0;
SUM = 1;
MAX = 2;
}
optional EltwiseOp operation = 1 [default = SUM]; // element-wise operation
repeated float coeff = 2; // blob-wise coefficient for SUM operation
// Whether to use an asymptotically slower (for >2 inputs) but stabler method
// of computing the gradient for the PROD operation. (No effect for SUM op.)
optional bool stable_prod_grad = 3 [default = true];
}
// Message that stores parameters used by ELULayer
message ELUParameter {
// Described in:
// Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and Accurate
// Deep Network Learning by Exponential Linear Units (ELUs). arXiv
optional float alpha = 1 [default = 1];
}
// Message that stores parameters used by EmbedLayer
message EmbedParameter {
optional uint32 num_output = 1; // The number of outputs for the layer
// The input is given as integers to be interpreted as one-hot
// vector indices with dimension num_input. Hence num_input should be
// 1 greater than the maximum possible input value.
optional uint32 input_dim = 2;
optional bool bias_term = 3 [default = true]; // Whether to use a bias term
optional FillerParameter weight_filler = 4; // The filler for the weight
optional FillerParameter bias_filler = 5; // The filler for the bias
}
// Message that stores parameters used by ExpLayer
message ExpParameter {
// ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0.
// Or if base is set to the default (-1), base is set to e,
// so y = exp(shift + scale * x).
optional float base = 1 [default = -1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}
/// Message that stores parameters used by FlattenLayer
message FlattenParameter {
// The first axis to flatten: all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
optional int32 axis = 1 [default = 1];
// The last axis to flatten: all following axes are retained in the output.
// May be negative to index from the end (e.g., the default -1 for the last
// axis).
optional int32 end_axis = 2 [default = -1];
}
// Message that stores parameters used by HDF5DataLayer
message HDF5DataParameter {
// Specify the data source.
optional string source = 1;
// Specify the batch size.
optional uint32 batch_size = 2;
// Specify whether to shuffle the data.
// If shuffle == true, the ordering of the HDF5 files is shuffled,
// and the ordering of data within any given HDF5 file is shuffled,
// but data between different files are not interleaved; all of a file's
// data are output (in a random order) before moving onto another file.
optional bool shuffle = 3 [default = false];
}
message HDF5OutputParameter {
optional string file_name = 1;
}
message HingeLossParameter {
enum Norm {
L1 = 1;
L2 = 2;
}
// Specify the Norm to use L1 or L2
optional Norm norm = 1 [default = L1];
}
message ImageDataParameter {
// Specify the data source.
optional string source = 1;
// Specify the batch size.
optional uint32 batch_size = 4 [default = 1];
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
optional uint32 rand_skip = 7 [default = 0];
// Whether or not ImageLayer should shuffle the list of files at every epoch.
optional bool shuffle = 8 [default = false];
// It will also resize images if new_height or new_width are not zero.
optional uint32 new_height = 9 [default = 0];
optional uint32 new_width = 10 [default = 0];
// Specify if the images are color or gray
optional bool is_color = 11 [default = true];
// DEPRECATED. See TransformationParameter. For data pre-processing, we can do
// simple scaling and subtracting the data mean, if provided. Note that the
// mean subtraction is always carried out before scaling.
optional float scale = 2 [default = 1];
optional string mean_file = 3;
// DEPRECATED. See TransformationParameter. Specify if we would like to randomly
// crop an image.
optional uint32 crop_size = 5 [default = 0];
// DEPRECATED. See TransformationParameter. Specify if we want to randomly mirror
// data.
optional bool mirror = 6 [default = false];
optional string root_folder = 12 [default = ""];
}
message InfogainLossParameter {
// Specify the infogain matrix source.
optional string source = 1;
optional int32 axis = 2 [default = 1]; // axis of prob
}
message InnerProductParameter {
optional uint32 num_output = 1; // The number of outputs for the layer
optional bool bias_term = 2 [default = true]; // whether to have bias terms
optional FillerParameter weight_filler = 3; // The filler for the weight
optional FillerParameter bias_filler = 4; // The filler for the bias
// The first axis to be lumped into a single inner product computation;
// all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
optional int32 axis = 5 [default = 1];
// Specify whether to transpose the weight matrix or not.
// If transpose == true, any operations will be performed on the transpose
// of the weight matrix. The weight matrix itself is not going to be transposed
// but rather the transfer flag of operations will be toggled accordingly.
optional bool transpose = 6 [default = false];
}
message InputParameter {
// This layer produces N >= 1 top blob(s) to be assigned manually.
// Define N shapes to set a shape for each top.
// Define 1 shape to set the same shape for every top.
// Define no shape to defer to reshaping manually.
repeated BlobShape shape = 1;
}
// Message that stores parameters used by LogLayer
message LogParameter {
// LogLayer computes outputs y = log_base(shift + scale * x), for base > 0.
// Or if base is set to the default (-1), base is set to e,
// so y = ln(shift + scale * x) = log_e(shift + scale * x)
optional float base = 1 [default = -1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}
// Message that stores parameters used by LRNLayer
message LRNParameter {
optional uint32 local_size = 1 [default = 5];
optional float alpha = 2 [default = 1.];
optional float beta = 3 [default = 0.75];
enum NormRegion {
ACROSS_CHANNELS = 0;
WITHIN_CHANNEL = 1;
}
optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS];
optional float k = 5 [default = 1.];
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 6 [default = DEFAULT];
}
message MemoryDataParameter {
optional uint32 batch_size = 1;
optional uint32 channels = 2;
optional uint32 height = 3;
optional uint32 width = 4;
}
message MVNParameter {
// This parameter can be set to false to normalize mean only
optional bool normalize_variance = 1 [default = true];
// This parameter can be set to true to perform DNN-like MVN
optional bool across_channels = 2 [default = false];
// Epsilon for not dividing by zero while normalizing variance
optional float eps = 3 [default = 1e-9];
}
message ParameterParameter {
optional BlobShape shape = 1;
}
message PoolingParameter {
enum PoolMethod {
MAX = 0;
AVE = 1;
STOCHASTIC = 2;
}
optional PoolMethod pool = 1 [default = MAX]; // The pooling method
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in height and width or as Y, X pairs.
optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X)
optional uint32 pad_h = 9 [default = 0]; // The padding height
optional uint32 pad_w = 10 [default = 0]; // The padding width
optional uint32 kernel_size = 2; // The kernel size (square)
optional uint32 kernel_h = 5; // The kernel height
optional uint32 kernel_w = 6; // The kernel width
optional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X)
optional uint32 stride_h = 7; // The stride height
optional uint32 stride_w = 8; // The stride width
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 11 [default = DEFAULT];
// If global_pooling then it will pool over the size of the bottom by doing
// kernel_h = bottom->height and kernel_w = bottom->width
optional bool global_pooling = 12 [default = false];
// How to calculate the output size - using ceil (default) or floor rounding.
enum RoundMode {
CEIL = 0;
FLOOR = 1;
}
optional RoundMode round_mode = 13 [default = CEIL];
}
message PowerParameter {
// PowerLayer computes outputs y = (shift + scale * x) ^ power.
optional float power = 1 [default = 1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}
message PythonParameter {
optional string module = 1;
optional string layer = 2;
// This value is set to the attribute `param_str` of the `PythonLayer` object
// in Python before calling the `setup()` method. This could be a number,
// string, dictionary in Python dict format, JSON, etc. You may parse this
// string in `setup` method and use it in `forward` and `backward`.
optional string param_str = 3 [default = ''];
// DEPRECATED
optional bool share_in_parallel = 4 [default = false];
}
// Message that stores parameters used by RecurrentLayer
message RecurrentParameter {
// The dimension of the output (and usually hidden state) representation --
// must be explicitly set to non-zero.
optional uint32 num_output = 1 [default = 0];
optional FillerParameter weight_filler = 2; // The filler for the weight
optional FillerParameter bias_filler = 3; // The filler for the bias
// Whether to enable displaying debug_info in the unrolled recurrent net.
optional bool debug_info = 4 [default = false];
// Whether to add as additional inputs (bottoms) the initial hidden state
// blobs, and add as additional outputs (tops) the final timestep hidden state
// blobs. The number of additional bottom/top blobs required depends on the
// recurrent architecture -- e.g., 1 for RNNs, 2 for LSTMs.
optional bool expose_hidden = 5 [default = false];
}
// Message that stores parameters used by ReductionLayer
message ReductionParameter {
enum ReductionOp {
SUM = 1;
ASUM = 2;
SUMSQ = 3;
MEAN = 4;
}
optional ReductionOp operation = 1 [default = SUM]; // reduction operation
// The first axis to reduce to a scalar -- may be negative to index from the
// end (e.g., -1 for the last axis).
// (Currently, only reduction along ALL "tail" axes is supported; reduction
// of axis M through N, where N < num_axes - 1, is unsupported.)
// Suppose we have an n-axis bottom Blob with shape:
// (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).
// If axis == m, the output Blob will have shape
// (d0, d1, d2, ..., d(m-1)),
// and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1))
// times, each including (dm * d(m+1) * ... * d(n-1)) individual data.
// If axis == 0 (the default), the output Blob always has the empty shape
// (count 1), performing reduction across the entire input --
// often useful for creating new loss functions.
optional int32 axis = 2 [default = 0];
optional float coeff = 3 [default = 1.0]; // coefficient for output
}
// Message that stores parameters used by ReLULayer
message ReLUParameter {
// Allow non-zero slope for negative inputs to speed up optimization
// Described in:
// Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities
// improve neural network acoustic models. In ICML Workshop on Deep Learning
// for Audio, Speech, and Language Processing.
optional float negative_slope = 1 [default = 0];
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 2 [default = DEFAULT];
}
message ReshapeParameter {
// Specify the output dimensions. If some of the dimensions are set to 0,
// the corresponding dimension from the bottom layer is used (unchanged).
// Exactly one dimension may be set to -1, in which case its value is
// inferred from the count of the bottom blob and the remaining dimensions.
// For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8:
//
// layer {
// type: "Reshape" bottom: "input" top: "output"
// reshape_param { ... }
// }
//
// If "input" is 2D with shape 2 x 8, then the following reshape_param
// specifications are all equivalent, producing a 3D blob "output" with shape
// 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: -1 } }
// reshape_param { shape { dim: 0 dim:-1 dim: 4 } }
//
optional BlobShape shape = 1;
// axis and num_axes control the portion of the bottom blob's shape that are
// replaced by (included in) the reshape. By default (axis == 0 and
// num_axes == -1), the entire bottom blob shape is included in the reshape,
// and hence the shape field must specify the entire output shape.
//
// axis may be non-zero to retain some portion of the beginning of the input
// shape (and may be negative to index from the end; e.g., -1 to begin the
// reshape after the last axis, including nothing in the reshape,
// -2 to include only the last axis, etc.).
//
// For example, suppose "input" is a 2D blob with shape 2 x 8.
// Then the following ReshapeLayer specifications are all equivalent,
// producing a blob "output" with shape 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 2 dim: 4 } axis: 1 }
// reshape_param { shape { dim: 2 dim: 4 } axis: -3 }
//
// num_axes specifies the extent of the reshape.
// If num_axes >= 0 (and axis >= 0), the reshape will be performed only on
// input axes in the range [axis, axis+num_axes].
// num_axes may also be -1, the default, to include all remaining axes
// (starting from axis).
//
// For example, suppose "input" is a 2D blob with shape 2 x 8.
// Then the following ReshapeLayer specifications are equivalent,
// producing a blob "output" with shape 1 x 2 x 8.
//
// reshape_param { shape { dim: 1 dim: 2 dim: 8 } }
// reshape_param { shape { dim: 1 dim: 2 } num_axes: 1 }
// reshape_param { shape { dim: 1 } num_axes: 0 }
//
// On the other hand, these would produce output blob shape 2 x 1 x 8:
//
// reshape_param { shape { dim: 2 dim: 1 dim: 8 } }
// reshape_param { shape { dim: 1 } axis: 1 num_axes: 0 }
//
optional int32 axis = 2 [default = 0];
optional int32 num_axes = 3 [default = -1];
}
message ScaleParameter {
// The first axis of bottom[0] (the first input Blob) along which to apply
// bottom[1] (the second input Blob). May be negative to index from the end
// (e.g., -1 for the last axis).
//
// For example, if bottom[0] is 4D with shape 100x3x40x60, the output
// top[0] will have the same shape, and bottom[1] may have any of the
// following shapes (for the given value of axis):
// (axis == 0 == -4) 100; 100x3; 100x3x40; 100x3x40x60
// (axis == 1 == -3) 3; 3x40; 3x40x60
// (axis == 2 == -2) 40; 40x60
// (axis == 3 == -1) 60
// Furthermore, bottom[1] may have the empty shape (regardless of the value of
// "axis") -- a scalar multiplier.
optional int32 axis = 1 [default = 1];
// (num_axes is ignored unless just one bottom is given and the scale is
// a learned parameter of the layer. Otherwise, num_axes is determined by the
// number of axes by the second bottom.)
// The number of axes of the input (bottom[0]) covered by the scale
// parameter, or -1 to cover all axes of bottom[0] starting from `axis`.
// Set num_axes := 0, to multiply with a zero-axis Blob: a scalar.
optional int32 num_axes = 2 [default = 1];
// (filler is ignored unless just one bottom is given and the scale is
// a learned parameter of the layer.)
// The initialization for the learned scale parameter.
// Default is the unit (1) initialization, resulting in the ScaleLayer
// initially performing the identity operation.
optional FillerParameter filler = 3;
// Whether to also learn a bias (equivalent to a ScaleLayer+BiasLayer, but
// may be more efficient). Initialized with bias_filler (defaults to 0).
optional bool bias_term = 4 [default = false];
optional FillerParameter bias_filler = 5;
}
message SigmoidParameter {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 1 [default = DEFAULT];
}
message SliceParameter {
// The axis along which to slice -- may be negative to index from the end
// (e.g., -1 for the last axis).
// By default, SliceLayer concatenates blobs along the "channels" axis (1).
optional int32 axis = 3 [default = 1];
repeated uint32 slice_point = 2;
// DEPRECATED: alias for "axis" -- does not support negative indexing.
optional uint32 slice_dim = 1 [default = 1];
}
// Message that stores parameters used by SoftmaxLayer, SoftmaxWithLossLayer
message SoftmaxParameter {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 1 [default = DEFAULT];
// The axis along which to perform the softmax -- may be negative to index
// from the end (e.g., -1 for the last axis).
// Any other axes will be evaluated as independent softmaxes.
optional int32 axis = 2 [default = 1];
}
// Message that stores parameters used by SwishLayer
message SwishParameter {
// Beta parameter for the Swish activation function
// Described in:
// Prajit Ramachandran, Barret Zoph, Quoc V. Le. (2017). Searching for
// Activation Functions. https://arxiv.org/abs/1710.05941v2
optional float beta = 1 [default = 1];
}
message TanHParameter {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 1 [default = DEFAULT];
}
// Message that stores parameters used by TileLayer
message TileParameter {
// The index of the axis to tile.
optional int32 axis = 1 [default = 1];
// The number of copies (tiles) of the blob to output.
optional int32 tiles = 2;
}
// Message that stores parameters used by ThresholdLayer
message ThresholdParameter {
optional float threshold = 1 [default = 0]; // Strictly positive values
}
message WindowDataParameter {
// Specify the data source.
optional string source = 1;
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional float scale = 2 [default = 1];
optional string mean_file = 3;
// Specify the batch size.
optional uint32 batch_size = 4;
// Specify if we would like to randomly crop an image.
optional uint32 crop_size = 5 [default = 0];
// Specify if we want to randomly mirror data.
optional bool mirror = 6 [default = false];
// Foreground (object) overlap threshold
optional float fg_threshold = 7 [default = 0.5];
// Background (non-object) overlap threshold
optional float bg_threshold = 8 [default = 0.5];
// Fraction of batch that should be foreground objects
optional float fg_fraction = 9 [default = 0.25];
// Amount of contextual padding to add around a window
// (used only by the window_data_layer)
optional uint32 context_pad = 10 [default = 0];
// Mode for cropping out a detection window
// warp: cropped window is warped to a fixed size and aspect ratio
// square: the tightest square around the window is cropped
optional string crop_mode = 11 [default = "warp"];
// cache_images: will load all images in memory for faster access
optional bool cache_images = 12 [default = false];
// append root_folder to locate images
optional string root_folder = 13 [default = ""];
}
message SPPParameter {
enum PoolMethod {
MAX = 0;
AVE = 1;
STOCHASTIC = 2;
}
optional uint32 pyramid_height = 1;
optional PoolMethod pool = 2 [default = MAX]; // The pooling method
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 6 [default = DEFAULT];
}
// DEPRECATED: use LayerParameter.
message V1LayerParameter {
repeated string bottom = 2;
repeated string top = 3;
optional string name = 4;
repeated NetStateRule include = 32;
repeated NetStateRule exclude = 33;
enum LayerType {
NONE = 0;
ABSVAL = 35;
ACCURACY = 1;
ARGMAX = 30;
BNLL = 2;
CONCAT = 3;
CONTRASTIVE_LOSS = 37;
CONVOLUTION = 4;
UPSAMPLE = 40;
DATA = 5;
DECONVOLUTION = 39;
DROPOUT = 6;
DUMMY_DATA = 32;
EUCLIDEAN_LOSS = 7;
ELTWISE = 25;
EXP = 38;
FLATTEN = 8;
HDF5_DATA = 9;
HDF5_OUTPUT = 10;
HINGE_LOSS = 28;
IM2COL = 11;
IMAGE_DATA = 12;
INFOGAIN_LOSS = 13;
INNER_PRODUCT = 14;
LRN = 15;
MEMORY_DATA = 29;
MULTINOMIAL_LOGISTIC_LOSS = 16;
MVN = 34;
POOLING = 17;
POWER = 26;
RELU = 18;
SIGMOID = 19;
SIGMOID_CROSS_ENTROPY_LOSS = 27;
SILENCE = 36;
SOFTMAX = 20;
SOFTMAX_LOSS = 21;
SPLIT = 22;
SLICE = 33;
TANH = 23;
WINDOW_DATA = 24;
THRESHOLD = 31;
}
optional LayerType type = 5;
repeated BlobProto blobs = 6;
repeated string param = 1001;
repeated DimCheckMode blob_share_mode = 1002;
enum DimCheckMode {
STRICT = 0;
PERMISSIVE = 1;
}
repeated float blobs_lr = 7;
repeated float weight_decay = 8;
repeated float loss_weight = 35;
optional AccuracyParameter accuracy_param = 27;
optional ArgMaxParameter argmax_param = 23;
optional ConcatParameter concat_param = 9;
optional ContrastiveLossParameter contrastive_loss_param = 40;
optional ConvolutionParameter convolution_param = 10;
optional UpsampleParameter upsample_param = 43;
optional DataParameter data_param = 11;
optional DropoutParameter dropout_param = 12;
optional DummyDataParameter dummy_data_param = 26;
optional EltwiseParameter eltwise_param = 24;
optional ExpParameter exp_param = 41;
optional HDF5DataParameter hdf5_data_param = 13;
optional HDF5OutputParameter hdf5_output_param = 14;
optional HingeLossParameter hinge_loss_param = 29;
optional ImageDataParameter image_data_param = 15;
optional InfogainLossParameter infogain_loss_param = 16;
optional InnerProductParameter inner_product_param = 17;
optional LRNParameter lrn_param = 18;
optional MemoryDataParameter memory_data_param = 22;
optional MVNParameter mvn_param = 34;
optional PoolingParameter pooling_param = 19;
optional PowerParameter power_param = 21;
optional ReLUParameter relu_param = 30;
optional SigmoidParameter sigmoid_param = 38;
optional SoftmaxParameter softmax_param = 39;
optional SliceParameter slice_param = 31;
optional TanHParameter tanh_param = 37;
optional ThresholdParameter threshold_param = 25;
optional WindowDataParameter window_data_param = 20;
optional TransformationParameter transform_param = 36;
optional LossParameter loss_param = 42;
optional V0LayerParameter layer = 1;
}
// DEPRECATED: V0LayerParameter is the old way of specifying layer parameters
// in Caffe. We keep this message type around for legacy support.
message V0LayerParameter {
optional string name = 1; // the layer name
optional string type = 2; // the string to specify the layer type
// Parameters to specify layers with inner products.
optional uint32 num_output = 3; // The number of outputs for the layer
optional bool biasterm = 4 [default = true]; // whether to have bias terms
optional FillerParameter weight_filler = 5; // The filler for the weight
optional FillerParameter bias_filler = 6; // The filler for the bias
optional uint32 pad = 7 [default = 0]; // The padding size
optional uint32 kernelsize = 8; // The kernel size
optional uint32 group = 9 [default = 1]; // The group size for group conv
optional uint32 stride = 10 [default = 1]; // The stride
enum PoolMethod {
MAX = 0;
AVE = 1;
STOCHASTIC = 2;
}
optional PoolMethod pool = 11 [default = MAX]; // The pooling method
optional float dropout_ratio = 12 [default = 0.5]; // dropout ratio
optional uint32 local_size = 13 [default = 5]; // for local response norm
optional float alpha = 14 [default = 1.]; // for local response norm
optional float beta = 15 [default = 0.75]; // for local response norm
optional float k = 22 [default = 1.];
// For data layers, specify the data source
optional string source = 16;
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional float scale = 17 [default = 1];
optional string meanfile = 18;
// For data layers, specify the batch size.
optional uint32 batchsize = 19;
// For data layers, specify if we would like to randomly crop an image.
optional uint32 cropsize = 20 [default = 0];
// For data layers, specify if we want to randomly mirror data.
optional bool mirror = 21 [default = false];
// The blobs containing the numeric parameters of the layer
repeated BlobProto blobs = 50;
// The ratio that is multiplied on the global learning rate. If you want to
// set the learning ratio for one blob, you need to set it for all blobs.
repeated float blobs_lr = 51;
// The weight decay that is multiplied on the global weight decay.
repeated float weight_decay = 52;
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
optional uint32 rand_skip = 53 [default = 0];
// Fields related to detection (det_*)
// foreground (object) overlap threshold
optional float det_fg_threshold = 54 [default = 0.5];
// background (non-object) overlap threshold
optional float det_bg_threshold = 55 [default = 0.5];
// Fraction of batch that should be foreground objects
optional float det_fg_fraction = 56 [default = 0.25];
// optional bool OBSOLETE_can_clobber = 57 [default = true];
// Amount of contextual padding to add around a window
// (used only by the window_data_layer)
optional uint32 det_context_pad = 58 [default = 0];
// Mode for cropping out a detection window
// warp: cropped window is warped to a fixed size and aspect ratio
// square: the tightest square around the window is cropped
optional string det_crop_mode = 59 [default = "warp"];
// For ReshapeLayer, one needs to specify the new dimensions.
optional int32 new_num = 60 [default = 0];
optional int32 new_channels = 61 [default = 0];
optional int32 new_height = 62 [default = 0];
optional int32 new_width = 63 [default = 0];
// Whether or not ImageLayer should shuffle the list of files at every epoch.
// It will also resize images if new_height or new_width are not zero.
optional bool shuffle_images = 64 [default = false];
// For ConcatLayer, one needs to specify the dimension for concatenation, and
// the other dimensions must be the same for all the bottom blobs.
// By default it will concatenate blobs along the channels dimension.
optional uint32 concat_dim = 65 [default = 1];
optional HDF5OutputParameter hdf5_output_param = 1001;
}
message PReLUParameter {
// Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:
// Surpassing Human-Level Performance on ImageNet Classification, 2015.
// Initial value of a_i. Default is a_i=0.25 for all i.
optional FillerParameter filler = 1;
// Whether or not slope parameters are shared across channels.
optional bool channel_shared = 2 [default = false];
}
message ReLU6Parameter {
optional float negative_slope = 1 [default = 0];
}
message InterpParameter {
optional int32 height = 1 [default = 0]; // Height of output
optional int32 width = 2 [default = 0]; // Width of output
optional int32 zoom_factor = 3 [default = 1]; // zoom factor
optional int32 shrink_factor = 4 [default = 1]; // shrink factor
optional int32 pad_beg = 5 [default = 0]; // padding at begin of input
optional int32 pad_end = 6 [default = 0]; // padding at end of input
}
message PermuteParameter {
// The new orders of the axes of data. Notice it should be with
// in the same range as the input data, and it starts from 0.
// Do not provide repeated order.
repeated uint32 order = 1;
}
message PriorBoxParameter {
// Encode/decode type.
enum CodeType {
CORNER = 1;
CENTER_SIZE = 2;
CORNER_SIZE = 3;
}
// Minimum box size (in pixels). Required!
repeated float min_size = 1;//对应论文2.2节中公式(4)中的sk×网络输入层输入图像[data层的输入]大小
// Maximum box size (in pixels). Required!
repeated float max_size = 2;
// Various of aspect ratios. Duplicate ratios will be ignored.
// If none is provided, we use default ratio 1.
repeated float aspect_ratio = 3; // 等宽比
// If true, will flip each aspect ratio.
// For example, if there is aspect ratio "r",
// we will generate aspect ratio "1.0/r" as well.
optional bool flip = 4 [default = true]; // 是否反转等宽比
// If true, will clip the prior so that it is within [0, 1]
optional bool clip = 5 [default = false]; // 是否进行裁剪,是否保证默认框整个在网络输入层输入图像内)
// Variance for adjusting the prior bboxes.
repeated float variance = 6;
// By default, we calculate img_height, img_width, step_x, step_y based on
// bottom[0] (feat) and bottom[1] (img). Unless these values are explicitely
// provided.
// Explicitly provide the img_size.
optional uint32 img_size = 7;
// Either img_size or img_h/img_w should be specified; not both.
optional uint32 img_h = 8;//网络输入层输入图像的高(或自行设置的高度)
optional uint32 img_w = 9;//网络输入层输入图像的宽(或自行设置的高度)
// Explicitly provide the step size.
optional float step = 10;
// Either step or step_h/step_w should be specified; not both.
optional float step_h = 11;
optional float step_w = 12;
// Offset to the top left corner of each cell.
optional float offset = 13 [default = 0.5];
}
// Message that store parameters used by DetectionOutputLayer
message DetectionOutputParameter {
// Number of classes to be predicted. Required!
optional uint32 num_classes = 1;
// If true, bounding box are shared among different classes.
optional bool share_location = 2 [default = true];
// Background label id. If there is no background class,
// set it as -1.
optional int32 background_label_id = 3 [default = 0];
// Parameters used for non maximum suppression.
optional NonMaximumSuppressionParameter nms_param = 4;
// Parameters used for saving detection results.
optional SaveOutputParameter save_output_param = 5;
// Type of coding method for bbox.
optional PriorBoxParameter.CodeType code_type = 6 [default = CORNER];
// If true, variance is encoded in target; otherwise we need to adjust the
// predicted offset accordingly.
optional bool variance_encoded_in_target = 8 [default = false];
// Number of total bboxes to be kept per image after nms step.
// -1 means keeping all bboxes after nms step.
optional int32 keep_top_k = 7 [default = -1];
// Only consider detections whose confidences are larger than a threshold.
// If not provided, consider all boxes.
optional float confidence_threshold = 9;
// If true, visualize the detection results.
optional bool visualize = 10 [default = false];
// The threshold used to visualize the detection results.
optional float visualize_threshold = 11;
// If provided, save outputs to video file.
optional string save_file = 12;
}
// Message that store parameters used by DetectionEvaluateLayer
message DetectionEvaluateParameter {
// Number of classes that are actually predicted. Required!
optional uint32 num_classes = 1;
// Label id for background class. Needed for sanity check so that
// background class is neither in the ground truth nor the detections.
optional uint32 background_label_id = 2 [default = 0];
// Threshold for deciding true/false positive.
optional float overlap_threshold = 3 [default = 0.5];
// If true, also consider difficult ground truth for evaluation.
optional bool evaluate_difficult_gt = 4 [default = true];
// A file which contains a list of names and sizes with same order
// of the input DB. The file is in the following format:
// name height width
// ...
// If provided, we will scale the prediction and ground truth NormalizedBBox
// for evaluation.
optional string name_size_file = 5;
// The resize parameter used in converting NormalizedBBox to original image.
optional ResizeParameter resize_param = 6;
}
message ResizeParameter {
//Probability of using this resize policy
optional float prob = 1 [default = 1];
enum Resize_mode {
WARP = 1;
FIT_SMALL_SIZE = 2;
FIT_LARGE_SIZE_AND_PAD = 3;
}
optional Resize_mode resize_mode = 2 [default = WARP];
optional uint32 height = 3 [default = 0];
optional uint32 width = 4 [default = 0];
// A parameter used to update bbox in FIT_SMALL_SIZE mode.
optional uint32 height_scale = 8 [default = 0];
optional uint32 width_scale = 9 [default = 0];
enum Pad_mode {
CONSTANT = 1;
MIRRORED = 2;
REPEAT_NEAREST = 3;
}
// Padding mode for BE_SMALL_SIZE_AND_PAD mode and object centering
optional Pad_mode pad_mode = 5 [default = CONSTANT];
// if specified can be repeated once (would fill all the channels)
// or can be repeated the same number of times as channels
// (would use it them to the corresponding channel)
repeated float pad_value = 6;
enum Interp_mode { //Same as in OpenCV
LINEAR = 1;
AREA = 2;
NEAREST = 3;
CUBIC = 4;
LANCZOS4 = 5;
}
//interpolation for resizing
repeated Interp_mode interp_mode = 7;
}
message NonMaximumSuppressionParameter {
// Threshold to be used in nms.
optional float nms_threshold = 1 [default = 0.3];
// Maximum number of results to be kept.
optional int32 top_k = 2;
// Parameter for adaptive nms.
optional float eta = 3 [default = 1.0];
}
message SaveOutputParameter {
// Output directory. If not empty, we will save the results.
optional string output_directory = 1;
// Output name prefix.
optional string output_name_prefix = 2;
// Output format.
// VOC - PASCAL VOC output format.
// COCO - MS COCO output format.
optional string output_format = 3;
// If you want to output results, must also provide the following two files.
// Otherwise, we will ignore saving results.
// label map file.
optional string label_map_file = 4;
// A file which contains a list of names and sizes with same order
// of the input DB. The file is in the following format:
// name height width
// ...
optional string name_size_file = 5;
// Number of test images. It can be less than the lines specified in
// name_size_file. For example, when we only want to evaluate on part
// of the test images.
optional uint32 num_test_image = 6;
// The resize parameter used in saving the data.
optional ResizeParameter resize_param = 7;
}
message AxpyParameter {
}
// Message that stores parameters used by NormalizeLayer
message NormalizeParameter {
optional bool across_spatial = 1 [default = true];
// Initial value of scale. Default is 1.0 for all
optional FillerParameter scale_filler = 2;
// Whether or not scale parameters are shared across channels.
optional bool channel_shared = 3 [default = true];
// Epsilon for not dividing by zero while normalizing variance
optional float eps = 4 [default = 1e-10];
}
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
# Tencent is pleased to support the open source community by making TNN available.
#
# Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import src.c2oObject as Node
def get_add_output_shape(input_shape):
output_shape = input_shape[0]
return [output_shape]
def create_add_node(layer, node_name, input_name, output_name, input_shape):
output_shape = get_add_output_shape(input_shape)
node = Node.c2oNode(layer, node_name, 'Add', input_name, output_name, input_shape, output_shape)
return node
# Tencent is pleased to support the open source community by making TNN available.
#
# Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import src.c2oObject as Node
from typing import *
import copy
def need_add_reshape(input_shape: List[List]) -> bool:
return len(input_shape[0]) != len(input_shape[1])
def get_param_shape(input_shape: List[List]) -> List:
input = input_shape[0]
scale = copy.deepcopy(input_shape[1])
if len(input) > len(scale):
for i in range(len(input) - len(scale)):
scale.append(1)
return scale
def broadcast_scale(input_shape: List[List]) -> List[List]:
input = input_shape[0]
scale = input_shape[1]
if len(input) > len(scale):
for i in range(len(input) - len(scale)):
scale.append(1)
broadcast_shape = [input, scale]
elif len(input) < len(scale):
print("the scale should be less than input")
exit(-1)
else:
broadcast_shape = [input, scale]
return broadcast_shape
def get_mul_output_shape(input_shape: List[List]) -> List[List]:
output_shape = input_shape[1]
return [output_shape]
def create_axpy_mul_node(layer, node_name, input_name, output_name, input_shape):
new_node_name = node_name + "_middle"
output_shape = get_mul_output_shape(input_shape)
new_input_name = [input_name[0], input_name[1]]
new_output_name = [output_name[0] + "_mul"]
new_input_shape = [input_shape[0], input_shape[1]]
node = Node.c2oNode(layer, new_node_name, 'Mul', new_input_name, new_output_name, new_input_shape, output_shape)
return node
def get_add_output_shape(input_shape):
output_shape = input_shape[1]
return [output_shape]
def create_axpy_add_node(layer, node_name, input_name, output_name, input_shape):
output_shape = get_add_output_shape(input_shape)
new_input_name = [node_name + "_mul", input_name[2]]
new_input_shape = [input_shape[1], input_shape[2]]
node = Node.c2oNode(layer, node_name, "Add", new_input_name, output_name, input_shape, output_shape)
return node
import src.c2oObject as Node
##-----------------------------BatchNormalization层 = BatchNorm + Scale-------------------------------------##
#获取超参数
def getBNAttri(layer):
#超参数字典
eps = layer.batch_norm_param.eps
momentum = layer.batch_norm_param.moving_average_fraction
dict = {"epsilon": eps, # 滑动系数
"momentum": momentum
}
return dict
#计算输出维度
def getBNOutShape(input_shape):
output_shape = input_shape
return output_shape
#构建节点
def createBN(layer, nodename, inname, outname, input_shape):
dict = getBNAttri(layer)
#计算output_shape,输出维度等于输入维度
output_shape = getBNOutShape(input_shape)
#构建node
node = Node.c2oNode(layer, nodename, "BatchNormalization", inname, outname, input_shape, output_shape,dict)
return node
\ No newline at end of file
# Tencent is pleased to support the open source community by making TNN available.
#
# Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import src.c2oObject as Node
def get_attribute(layer):
attributes = {}
max_attribute = 0
min_attribute = 0
if layer.type == 'ReLU6':
max_attribute = 6.0
min_attribute = 0
attribute = {
'max': max_attribute,
'min': min_attribute
}
return attributes
def get_clip_output_shape(input_shape):
output_shape = input_shape
return output_shape
def create_clip_node(layer, node_name, input_name, output_name, input_shape):
# onnx 1.6.0 don't use
# attributes = get_attribute(layer)
output_shape = get_clip_output_shape(input_shape)
node = Node.c2oNode(layer, node_name, 'Clip', input_name, output_name, input_shape, output_shape)
return node
import src.c2oObject as Node
from typing import List
import copy
def get_concat_attributes(layer):
##轴
axis = layer.concat_param.axis
attributes = {"axis": axis}
return attributes
# 计算输出维度
def get_concat_outshape(layer, input_shape: List) -> List:
bottom = input_shape[0]
axis = layer.concat_param.axis
output_shape = copy.deepcopy(bottom)
assert (axis < len(bottom))
for i in range(1, len(input_shape)):
output_shape[axis] = output_shape[axis] + input_shape[i][axis]
return [output_shape]
#
# if len(bottom) == 2:
# n, c = bottom[0], 0
# for i in range(len(input_shape)):
# c = c + input_shape[i][1]
# output_shape = [[n, c]]
# return output_shape
#
# elif len(bottom) == 3:
# n, c = bottom[0], 0
# for i in range(len(input_shape)):
# c = c + input_shape[i][1]
# output_shape = [[n, c]]
# return output_shape
#
# elif len(bottom) == 4:
# n, c, w, h = input_shape[0][0], 0, input_shape[0][2], input_shape[0][3]
# for i in range(len(input_shape)):
# c = c + input_shape[i][1]
# output_shape = [[n, c, w, h]]
# return output_shape
# 构建节点
def createConcat(layer, nodename, inname, outname, input_shape):
attributes = get_concat_attributes(layer)
output_shape = get_concat_outshape(layer, input_shape)
node = Node.c2oNode(layer, nodename, "Concat", inname, outname, input_shape, output_shape, attributes)
return node
import numpy as np
import src.c2oObject as Node
import math
# 获取超参数
def getConvAttri(layer, input_shape):
# 膨胀系数 dilations
dilations = [1, 1]
if layer.convolution_param.dilation != []:
dilation = layer.convolution_param.dilation[0]
dilations = [dilation, dilation]
##填充pads
pads = [0, 0, 0, 0] # 默认为0
if layer.convolution_param.pad != []: # 若存在pad,则根据pad赋值
pads = np.array([layer.convolution_param.pad] * 4).reshape(1, -1)[0].tolist()
elif layer.convolution_param.pad_h != 0 or layer.convolution_param.pad_w != 0: # 若存在pad_w,pad_h则根据其赋值
pads = [layer.convolution_param.pad_h, layer.convolution_param.pad_w, layer.convolution_param.pad_h,
layer.convolution_param.pad_w]
##步长strides
strides = [1, 1] # 默认为1
if layer.convolution_param.stride != []:
strides = np.array([layer.convolution_param.stride] * 2).reshape(1, -1)[0].tolist()
elif layer.convolution_param.stride_h != 0 and layer.convolution_param.stride_w != 0:
strides = [layer.convolution_param.stride_h, layer.convolution_param.stride_w]
##卷积核尺寸kernel_shape
kernel_shape = np.array([layer.convolution_param.kernel_size] * 2).reshape(1, -1)[0].tolist()
if layer.convolution_param.kernel_size == []:
kernel_shape = [layer.convolution_param.kernel_h, layer.convolution_param.kernel_w]
##分组group
group = 1
if layer.type == "ConvolutionDepthwise":
group = input_shape[0][1]
else:
group = layer.convolution_param.group
# 超参数字典
dict = {
#"auto_pad":"NOTSET",
"dilations": dilations,
"group": group,
"kernel_shape": kernel_shape,
"pads": pads,
"strides": strides
}
return dict
# 计算输出维度
def getConvOutShape(input_shape, layer, dict):
dilations = dict["dilations"]
kernel_shape = dict["kernel_shape"]
pads = dict["pads"]
strides = dict["strides"]
##卷积核数量kernel_num
kernel_num = layer.convolution_param.num_output
# reference the caffe source code
kernel_extent_h = dilations[0] * (kernel_shape[0] - 1) + 1
output_shape_h = math.floor((input_shape[0][2] + 2 * pads[0] - kernel_extent_h) / strides[0]) + 1
kernel_extent_w = dilations[1] * (kernel_shape[1] - 1) + 1
output_shape_w = math.floor((input_shape[0][3] + 2 * pads[1] - kernel_extent_w) / strides[1]) + 1
output_shape = [[input_shape[0][0], kernel_num, output_shape_h, output_shape_w]]
return output_shape
# 构建节点
def createConv(layer, node_name, input_name, output_name, input_shape):
attributes = getConvAttri(layer, input_shape)
output_shape = getConvOutShape(input_shape, layer, attributes)
# 构建node
node = Node.c2oNode(layer, node_name, "Conv", input_name, output_name, input_shape, output_shape, attributes)
return node
import numpy as np
import src.c2oObject as Node
##---------------------------------------------------ConvTranspose层-------------------------------------------------------##
#获取超参数
def getConvTransposeAttri(layer):
##膨胀系数dilations
dilations = [1, 1]
if layer.convolution_param.dilation != []:
dilation = layer.convolution_param.dilation[0]
dilations = [dilation, dilation]
##填充pads
pads = [0, 0, 0, 0] # 默认为0
if layer.convolution_param.pad != []: # 若存在pad,则根据pad赋值
pads = np.array([layer.convolution_param.pad] * 4).reshape(1, -1)[0].tolist()
elif layer.convolution_param.pad_h != 0 or layer.convolution_param.pad_w != 0: # 若存在pad_w,pad_h则根据其赋值
pads = [layer.convolution_param.pad_h, layer.convolution_param.pad_w, layer.convolution_param.pad_h,
layer.convolution_param.pad_w]
##步长strides
strides = [1, 1] # 默认为1
if layer.convolution_param.stride != []:
strides = np.array([layer.convolution_param.stride] * 2).reshape(1, -1)[0].tolist()
elif layer.convolution_param.stride_h != 0 and layer.convolution_param.stride_w != 0:
strides = [layer.convolution_param.stride_h, layer.convolution_param.stride_w]
##卷积核尺寸kernel_shape
kernel_shape = np.array([layer.convolution_param.kernel_size] * 2).reshape(1, -1)[0].tolist()
if layer.convolution_param.kernel_size == []:
kernel_shape = [layer.convolution_param.kernel_h, layer.convolution_param.kernel_w]
##分组group
group = layer.convolution_param.group
# 超参数字典
dict = { # "auto_pad":"NOTSET",
"dilations": dilations,
"group": group,
"kernel_shape": kernel_shape,
"pads": pads,
"strides": strides
}
return dict
#计算输出维度
def getConvTransposeOutShape(input_shape, layer,dict):
dilations = dict["dilations"]
kernel_shape = dict["kernel_shape"]
pads = dict["pads"]
strides = dict["strides"]
##卷积核数量kernel_num
kernel_num = layer.convolution_param.num_output
def get_output_shape(i, k, p, s):
return (i-1)*s + k -2*p
h = get_output_shape(input_shape[0][2], kernel_shape[0], pads[0], strides[0])
w = get_output_shape(input_shape[0][3], kernel_shape[1], pads[1], strides[1])
output_shape = [[input_shape[0][0], kernel_num, h, w]]
return output_shape
#构建节点
def createConvTranspose(layer, nodename, inname, outname, input_shape):
dict = getConvTransposeAttri(layer)
output_shape = getConvTransposeOutShape(input_shape, layer, dict)
#构建node
node = Node.c2oNode(layer, nodename, "ConvTranspose", inname, outname, input_shape, output_shape, dict)
return node
# Tencent is pleased to support the open source community by making TNN available.
#
# Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import src.c2oObject as Node
import numpy as np
def get_crop_param(layer, input_shape):
axis: int = layer.crop_param.axis
crop_offset = layer.crop_param.offset
if not crop_offset:
offset_0 = 0
else:
offset_0 = crop_offset[0]
offset = []
starts = []
axes = []
ends = []
for i in range(len(input_shape[0])):
if i < axis:
start = 0
end = input_shape[1][i]
else:
if (i - axis) >= len(crop_offset):
offset.append(offset_0)
else:
offset.append(crop_offset[i - axis])
start = offset[i - axis]
end = start + input_shape[1][i]
if input_shape[0][i] != input_shape[1][i]:
axes.append(i)
starts.append(start)
ends.append(end)
return starts, ends, axes
def get_crop_output_shape(layer, input_shape):
return [input_shape[1]]
def create_crop_node(layer, node_name, input_name, output_name, input_shape):
output_shape = get_crop_output_shape(layer, input_shape)
node = Node.c2oNode(layer, node_name, "Slice", input_name, output_name, input_shape, output_shape)
return node
# Tencent is pleased to support the open source community by making TNN available.
#
# Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import onnx
from typing import *
from onnx import helper
from typing import *
import ctypes
import src.c2oObject as Node
def create_attribuates(layer) -> Dict:
detection_output_param = layer.detection_output_param
num_classes = detection_output_param.num_classes
share_location = 1 if detection_output_param.share_location else 0
background_label_id = detection_output_param.background_label_id
# NonMaximumSuppressionParameter
nms_threshold = detection_output_param.nms_param.nms_threshold
top_k = detection_output_param.nms_param.top_k
eta = detection_output_param.nms_param.eta
code_type = detection_output_param.code_type
variance_encoded_in_target = 1 if detection_output_param.variance_encoded_in_target else 0
keep_top_k = detection_output_param.keep_top_k
confidence_threshold = detection_output_param.confidence_threshold
visualize = 1 if detection_output_param.visualize else 0
visualize_threshold = detection_output_param.visualize_threshold
save_file = detection_output_param.save_file
# TODO: SaveOutputParameter
# save_output_param = detection_output_param.save_output_param
# output_directory: str = save_output_param.output_directory
# output_name_prefix: str = save_output_param.output_name_prefix
# output_format: str = save_output_param.output_format
# label_map_file: str = save_output_param.label_map_file
# name_size_file: str = save_output_param.name_size_file
# num_test_image: int = save_output_param.num_test_image
attributes = {
'num_classes' : num_classes,
'share_location' : share_location,
'background_label_id' : background_label_id,
'nms_threshold' : nms_threshold,
'top_k' : top_k,
'eta' : eta,
'code_type' : code_type,
'variance_encoded_in_target' : variance_encoded_in_target,
'keep_top_k' : keep_top_k,
'confidence_threshold' : confidence_threshold,
'visualize' : visualize,
'visualize_threshold' : visualize_threshold,
'save_file' : save_file
}
return attributes
def create_detection_output(layer,
node_name: str,
inputs_name: List[str],
outputs_name: List[str],
inputs_shape: List, ) -> onnx.NodeProto:
attributes = create_attribuates(layer)
outputs_shape = [[1, 1, 1, 7]]
node = Node.c2oNode(layer, node_name, "DetectionOutput",
inputs_name, outputs_name,
inputs_shape, outputs_shape,
attributes)
return node
import src.c2oObject as Node
##----------------------------------------------------Dropout层-------------------------------------------------------##
#获取超参数
def getDropoutAttri(layer):
##drop 比率
ratio = layer.dropout_param.dropout_ratio
#前向不需要dropout,ratio设置为0后,后续可以onnx工具优化掉
ratio = 0.0
# 超参数字典
dict = {"ratio":ratio}
return dict
def getDropoutOutShape(input_shape):
# 计算输出维度output_shape
output_shape = input_shape # 与输入维度一样
return output_shape
#构建节点
def createDropout(layer, nodename, inname, outname, input_shape):
dict = getDropoutAttri(layer)
output_shape = getDropoutOutShape(input_shape)
# 构建node
node = Node.c2oNode(layer, nodename, "Dropout", inname, outname, input_shape, output_shape, dict=dict)
return node
import src.c2oObject as Node
##-------------------------------------------------eltwise层----------------------------------------------------------##
def createEltwise(layer, nodename, inname, outname, input_shape):
#判断算子类型
if layer.eltwise_param.operation == 0:
node = __createMul(layer, nodename, inname, outname, input_shape)#按元素相乘
elif layer.eltwise_param.operation == 1:
node = __createAdd(layer, nodename, inname, outname, input_shape)#按元素相加
elif layer.eltwise_param.operation == 2:
node = __createMax(layer, nodename, inname, outname, input_shape)#按元素求最大值
return node
##----------------------------------------------Mul层,对应Prod-----------------------------------------------##
def __createMul(layer, nodename, inname, outname, input_shape):
output_shape = input_shape[0]
node = Node.c2oNode(layer, nodename, "Mul", inname, outname, input_shape, output_shape)
return node
##---------------------Add层,可能是两个中间层输出相加,也可能是一个输出加一个bias这种------------------------##
def __createAdd(layer, nodename, inname, outname, input_shape):
output_shape = [input_shape[0]]
node = Node.c2oNode(layer, nodename, "Add", inname, outname, input_shape, output_shape)
return node
##----------------------------------------------Max层-------------------------------------------------------------##
def __createMax(layer, nodename, inname, outname, input_shape):
output_shape = input_shape
node = Node.c2oNode(layer, nodename, "Max", inname, outname, input_shape, output_shape)
return node
import src.c2oObject as Node
from typing import List, Dict
import onnx
def get_attributes(layer) -> Dict:
axis = layer.flatten_param.axis
end_axis = layer.flatten_param.end_axis
if end_axis != -1:
print("not support end_axis param!")
exit(-1)
attributes = {
"axis": axis
}
return attributes
def get_flatten_output_shape(input_shape: List,
attributes: Dict) -> List:
shape = input_shape[0]
input_prod = 1
axis = attributes.get("axis")
for i in range(axis, len(shape)):
input_prod = input_prod * shape[i]
output_shape = [shape[0:axis]+ [input_prod]]
return output_shape
def create_flatten_node(layer, node_name : str,
input_names: List,
output_name: List,
input_shape: List) -> onnx.NodeProto:
attributes = get_attributes(layer)
output_shape = get_flatten_output_shape(input_shape, attributes)
node = Node.c2oNode(layer, node_name, "Flatten", input_names,
output_name, input_shape, output_shape, attributes)
return node
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment