TrainTest.md 5.07 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Training and Testing

[English](TrainTest.md) **|** [简体中文](TrainTest_CN.md)

Please run the commands in the root path of `BasicSR`. <br>
In general, both the training and testing include the following steps:

1. Prepare datasets. Please refer to [DatasetPreparation.md](DatasetPreparation.md)
1. Modify config files. The config files are under the `options` folder. For more specific configuration information, please refer to [Config](Config.md)
1. [Optional] You may need to download pre-trained models if you are testing or using pre-trained models. Please see [ModelZoo](ModelZoo.md)
1. Run commands. Use [Training Commands](#Training-Commands) or [Testing Commands](#Testing-Commands) accordingly.

#### 目录

1. [Training Commands](#Training-Commands)
    1. [Single GPU Training](#Single-GPU-Training)
    1. [Distributed (Multi-GPUs) Training](#Distributed-Training)
    1. [Slurm Training](#Slurm-Training)
1. [Testing Commands](#Testing-Commands)
    1. [Single GPU Testing](#Single-GPU-Testing)
    1. [Distributed (Multi-GPUs) Testing](#Distributed-Testing)
    1. [Slurm Testing](#Slurm-Testing)

## Training Commands

### Single GPU Training

> PYTHONPATH="./:${PYTHONPATH}" \\\
> CUDA_VISIBLE_DEVICES=0 \\\
> python basicsr/train.py -opt options/train/SRResNet_SRGAN/train_MSRResNet_x4.yml

### Distributed Training

**8 GPUs**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \\\
> python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/EDVR/train_EDVR_M_x4_SR_REDS_woTSA.yml --launcher pytorch

or

> CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \\\
> ./scripts/dist_train.sh 8 options/train/EDVR/train_EDVR_M_x4_SR_REDS_woTSA.yml

**4 GPUs**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> CUDA_VISIBLE_DEVICES=0,1,2,3 \\\
> python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/train/EDVR/train_EDVR_M_x4_SR_REDS_woTSA.yml --launcher pytorch

or

> CUDA_VISIBLE_DEVICES=0,1,2,3 \\\
> ./scripts/dist_train.sh 4 options/train/EDVR/train_EDVR_M_x4_SR_REDS_woTSA.yml

### Slurm Training

[Introduction to Slurm](https://slurm.schedmd.com/quickstart.html)

**1 GPU**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> GLOG_vmodule=MemcachedClient=-1 \\\
> srun -p [partition] --mpi=pmi2 --job-name=MSRResNetx4 --gres=gpu:1 --ntasks=1 --ntasks-per-node=1 --cpus-per-task=6 --kill-on-bad-exit=1 \\\
> python -u basicsr/train.py -opt options/train/SRResNet_SRGAN/train_MSRResNet_x4.yml --launcher="slurm"

**4 GPUs**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> GLOG_vmodule=MemcachedClient=-1 \\\
> srun -p [partition] --mpi=pmi2 --job-name=EDVRMwoTSA --gres=gpu:4 --ntasks=4 --ntasks-per-node=4 --cpus-per-task=4 --kill-on-bad-exit=1 \\\
> python -u basicsr/train.py -opt options/train/EDVR/train_EDVR_M_x4_SR_REDS_woTSA.yml --launcher="slurm"

**8 GPUs**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> GLOG_vmodule=MemcachedClient=-1 \\\
> srun -p [partition] --mpi=pmi2 --job-name=EDVRMwoTSA --gres=gpu:8 --ntasks=8 --ntasks-per-node=8 --cpus-per-task=6 --kill-on-bad-exit=1 \\\
> python -u basicsr/train.py -opt options/train/EDVR/train_EDVR_M_x4_SR_REDS_woTSA.yml --launcher="slurm"

## Testing Commands

### Single GPU Testing

> PYTHONPATH="./:${PYTHONPATH}" \\\
> CUDA_VISIBLE_DEVICES=0 \\\
> python basicsr/test.py -opt options/test/SRResNet_SRGAN/test_MSRResNet_x4.yml

### Distributed Testing

**8 GPUs**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \\\
> python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/test.py -opt options/test/EDVR/test_EDVR_M_x4_SR_REDS.yml --launcher pytorch

or

> CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \\\
> ./scripts/dist_test.sh 8 options/test/EDVR/test_EDVR_M_x4_SR_REDS.yml

**4 GPUs**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> CUDA_VISIBLE_DEVICES=0,1,2,3 \\\
> python -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/test.py -opt options/test/EDVR/test_EDVR_M_x4_SR_REDS.yml  --launcher pytorch

or

> CUDA_VISIBLE_DEVICES=0,1,2,3 \\\
> ./scripts/dist_test.sh 4 options/test/EDVR/test_EDVR_M_x4_SR_REDS.yml

### Slurm Testing

[Introduction to Slurm](https://slurm.schedmd.com/quickstart.html)

**1 GPU**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> GLOG_vmodule=MemcachedClient=-1 \\\
> srun -p [partition] --mpi=pmi2 --job-name=test --gres=gpu:1 --ntasks=1 --ntasks-per-node=1 --cpus-per-task=6 --kill-on-bad-exit=1 \\\
> python -u basicsr/test.py -opt options/test/SRResNet_SRGAN/test_MSRResNet_x4.yml --launcher="slurm"

**4 GPUs**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> GLOG_vmodule=MemcachedClient=-1 \\\
> srun -p [partition] --mpi=pmi2 --job-name=test --gres=gpu:4 --ntasks=4 --ntasks-per-node=4 --cpus-per-task=4 --kill-on-bad-exit=1 \\\
> python -u basicsr/test.py -opt options/test/EDVR/test_EDVR_M_x4_SR_REDS.yml --launcher="slurm"

**8 GPUs**

> PYTHONPATH="./:${PYTHONPATH}" \\\
> GLOG_vmodule=MemcachedClient=-1 \\\
> srun -p [partition] --mpi=pmi2 --job-name=test --gres=gpu:8 --ntasks=8 --ntasks-per-node=8 --cpus-per-task=6 --kill-on-bad-exit=1 \\\
> python -u basicsr/test.py -opt options/test/EDVR/test_EDVR_M_x4_SR_REDS.yml --launcher="slurm"