"vscode:/vscode.git/clone" did not exist on "f1d09a654158d7a041ec328d907861ad816383e8"
ModelZoo_CN.md 8.47 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# 模型库和基准

[English](ModelZoo.md) **|** [简体中文](ModelZoo_CN.md)

:arrow_double_down: 百度网盘: [预训练模型](https://pan.baidu.com/s/1R6Nc4v3cl79XPAiK0Toe7g) **|** [复现实验](https://pan.baidu.com/s/1UElD6q8sVAgn_cxeBDOlvQ)
:arrow_double_down: Google Drive: [Pretrained Models](https://drive.google.com/drive/folders/15DgDtfaLASQ3iAPJEVHQF49g9msexECG?usp=sharing) **|** [Reproduced Experiments](https://drive.google.com/drive/folders/1XN4WXKJ53KQ0Cu0Yv-uCt8DZWq6uufaP?usp=sharing)

---

我们提供了:

1. 官方的模型, 它们是从官方release的models直接转化过来的
1. 复现的模型, 使用`BasicSR`的框架复现的, 提供模型和log的例子

下载的模型可以放在 `experiments/pretrained_models` 文件夹.

**[下载官方提供的预训练模型]** ([Google Drive](https://drive.google.com/drive/folders/15DgDtfaLASQ3iAPJEVHQF49g9msexECG?usp=sharing), [百度网盘](https://pan.baidu.com/s/1R6Nc4v3cl79XPAiK0Toe7g))
你可以使用以下脚本从Google Drive下载预训练模型.

```python
python scripts/download_pretrained_models.py ESRGAN
# method can be ESRGAN, EDVR, StyleGAN, EDSR, DUF, DFDNet, dlib
```

**[下载复现的模型和log]** ([Google Drive](https://drive.google.com/drive/folders/1XN4WXKJ53KQ0Cu0Yv-uCt8DZWq6uufaP?usp=sharing), [百度网盘](https://pan.baidu.com/s/1UElD6q8sVAgn_cxeBDOlvQ))

此外, 我们在 [wandb](https://www.wandb.com/) 上更新了模型训练的过程和曲线. 大家可以方便的比较:

**[wandb训练曲线](https://app.wandb.ai/xintao/basicsr)**

<p align="center">
<a href="https://app.wandb.ai/xintao/basicsr" target="_blank">
   <img src="../assets/wandb.jpg" height="350">
</a></p>

#### 目录

1. [图像超分辨率](#图像超分辨率)
    1. [图像超分官方模型](#图像超分官方模型)
    1. [图像超分复现模型](#图像超分复现模型)
1. [视频超分辨率](#视频超分辨率)

## 图像超分辨率

在计算指标时:

- 所有的图像各条边crop了scale的像素
- 都在RGB通道上测试

### 图像超分官方模型

|Exp Name         | Set5 (PSNR/SSIM)     | Set14 (PSNR/SSIM)   |DIV2K100 (PSNR/SSIM)   |
| :------------- | :----------:    | :----------:   |:----------:   |
| EDSR_Mx2_f64b16_DIV2K_official-3ba7b086 | 35.7768 / 0.9442 | 31.4966 / 0.8939 | 34.6291 / 0.9373 |
| EDSR_Mx3_f64b16_DIV2K_official-6908f88a | 32.3597 / 0.903 | 28.3932 / 0.8096 | 30.9438 / 0.8737 |
| EDSR_Mx4_f64b16_DIV2K_official-0c287733 | 30.1821 / 0.8641 | 26.7528 / 0.7432 | 28.9679 / 0.8183 |
| EDSR_Lx2_f256b32_DIV2K_official-be38e77d | 35.9979 / 0.9454 | 31.8583 / 0.8971 | 35.0495 / 0.9407 |
| EDSR_Lx3_f256b32_DIV2K_official-3660f70d | 32.643 / 0.906 | 28.644 / 0.8152 | 31.28 / 0.8798 |
| EDSR_Lx4_f256b32_DIV2K_official-76ee1c8f | 30.5499 / 0.8701 | 27.0011 / 0.7509 | 29.277 / 0.8266 |

### 图像超分复现模型

实验名称的命名规则参见 [Config_CN.md](Config_CN.md).

|Exp Name         | Set5 (PSNR/SSIM)     | Set14 (PSNR/SSIM)   |DIV2K100 (PSNR/SSIM)   |
| :------------- | :----------:    | :----------:   |:----------:   |
| 001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb | 30.2468 / 0.8651 | 26.7817 / 0.7451 | 28.9967 / 0.8195 |
| 002_MSRResNet_x2_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb | 35.7483 / 0.9442 | 31.5403 / 0.8937 |34.6699 / 0.9377|
| 003_MSRResNet_x3_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb | 32.4038 / 0.9032| 28.4418 / 0.8106|30.9726 / 0.8743 |
| 004_MSRGAN_x4_f64b16_DIV2K_400k_B16G1_wandb | 28.0158 / 0.8087|24.7474 / 0.6623 | 26.6504 / 0.7462|
| | | | |
| 201_EDSR_Mx2_f64b16_DIV2K_300k_B16G1_wandb | 35.7395 / 0.944|31.4348 / 0.8934 |34.5798 / 0.937 |
| 202_EDSR_Mx3_f64b16_DIV2K_300k_B16G1_201pretrain_wandb|32.315 / 0.9026 |28.3866 / 0.8088 |30.9095 / 0.8731|
| 203_EDSR_Mx4_f64b16_DIV2K_300k_B16G1_201pretrain_wandb|30.1726 / 0.8641 |26.721 / 0.743 |28.9506 / 0.818|
| 204_EDSR_Lx2_f256b32_DIV2K_300k_B16G1_wandb | 35.9792 / 0.9453 | 31.7284 / 0.8959 | 34.9544 / 0.9399 |
| 205_EDSR_Lx3_f256b32_DIV2K_300k_B16G1_204pretrain_wandb | 32.6467 / 0.9057 | 28.6859 / 0.8152 | 31.2664 / 0.8793 |
| 206_EDSR_Lx4_f256b32_DIV2K_300k_B16G1_204pretrain_wandb | 30.4718 / 0.8695 | 26.9616 / 0.7502 | 29.2621 / 0.8265 |

## 视频超分辨率

#### Evaluation

In the evaluation, we include all the input frames and do not crop any border pixels unless otherwise stated.<br/>
We do not use the self-ensemble (flip testing) strategy and any other post-processing methods.

## EDVR

**Name convention**<br/>
EDVR\_(training dataset)\_(track name)\_(model complexity)

- track name. There are four tracks in the NTIRE 2019 Challenges on Video Restoration and Enhancement:
    - **SR**: super-resolution with a fixed downsampling kernel (MATLAB bicubic downsampling kernel is frequently used). Most of the previous video SR methods focus on this setting.
    - **SRblur**: the inputs are also degraded with motion blur.
    - **deblur**: standard deblurring (motion blur).
    - **deblurcomp**: motion blur + video compression artifacts.
- model complexity
    - **L** (Large): # of channels = 128, # of back residual blocks = 40. This setting is used in our competition submission.
    - **M** (Moderate): # of channels = 64, # of back residual blocks = 10.

| Model name |[Test Set] PSNR/SSIM |
|:----------:|:----------:|
| EDVR_Vimeo90K_SR_L | [Vid4] (Y<sup>1</sup>) 27.35/0.8264 [[↓Results]](https://drive.google.com/open?id=14nozpSfe9kC12dVuJ9mspQH5ZqE4mT9K)<br/> (RGB) 25.83/0.8077|
| EDVR_REDS_SR_M | [REDS] (RGB) 30.53/0.8699 [[↓Results]](https://drive.google.com/open?id=1Mek3JIxkjJWjhZhH4qVwTXnRZutKUtC-)|
| EDVR_REDS_SR_L | [REDS] (RGB) 31.09/0.8800 [[↓Results]](https://drive.google.com/open?id=1h6E0QVZyJ5SBkcnYaT1puxYYPVbPsTLt)|
| EDVR_REDS_SRblur_L | [REDS] (RGB) 28.88/0.8361 [[↓Results]](https://drive.google.com/open?id=1-8MNkQuMVMz30UilB9m_d0SXicwFEPZH)|
| EDVR_REDS_deblur_L | [REDS] (RGB) 34.80/0.9487 [[↓Results]](https://drive.google.com/open?id=133wCHTwiiRzenOEoStNbFuZlCX8Jn2at)|
| EDVR_REDS_deblurcomp_L | [REDS] (RGB) 30.24/0.8567 [[↓Results]](https://drive.google.com/open?id=1VjC4fXBXy0uxI8Kwxh-ijj4PZkfsLuTX)  |

<sup>1</sup> Y or RGB denotes the evaluation on Y (luminance) or RGB channels.

#### Stage 2 models for the NTIRE19 Competition

| Model name |[Test Set] PSNR/SSIM |
|:----------:|:----------:|
| EDVR_REDS_SR_Stage2 | [REDS] (RGB) / [[↓Results]]()|
| EDVR_REDS_SRblur_Stage2 | [REDS] (RGB) / [[↓Results]]()|
| EDVR_REDS_deblur_Stage2 | [REDS] (RGB) / [[↓Results]]()|
| EDVR_REDS_deblurcomp_Stage2 | [REDS] (RGB) / [[↓Results]]()  |


## DUF
The models are converted from the [officially released models](https://github.com/yhjo09/VSR-DUF). <br/>

| Model name | [Test Set] PSNR/SSIM<sup>1</sup> | Official Results<sup>2</sup> |
|:----------:|:----------:|:----------:|
| DUF_x4_52L_official<sup>3</sup> | [Vid4] (Y<sup>4</sup>) 27.33/0.8319 [[↓Results]](https://drive.google.com/open?id=1U9xGhlDSpPPQvKN0BAzXfjUCvaFxwsQf)<br/> (RGB) 25.80/0.8138   | (Y) 27.33/0.8318 [[↓Results]](https://drive.google.com/open?id=1HUmf__cSL7td7J4cXo2wvbVb14Y8YG2j)<br/> (RGB) 25.79/0.8136 |
| DUF_x4_28L_official | [Vid4]  | |
| DUF_x4_16L_official | [Vid4]  | |
| DUF_x3_16L_official | [Vid4]  | |
| DUF_x2_16L_official | [Vid4]  | |

<sup>1</sup> We crop eight pixels near image boundary for DUF due to its severe boundary effects. <br/>
<sup>2</sup> The official results are obtained by running the official codes and models. <br/>
<sup>3</sup> Different from the official codes, where `zero padding` is used for border frames, we use `new_info` strategy. <br/>
<sup>4</sup> Y or RGB denotes the evaluation on Y (luminance) or RGB channels.

## TOF
The models are converted from the [officially released models](https://github.com/anchen1011/toflow).<br/>

| Model name | [Test Set] PSNR/SSIM | Official Results<sup>1</sup> |
|:----------:|:----------:|:----------:|
| TOF_official<sup>2</sup> | [Vid4] (Y<sup>3</sup>) 25.86/0.7626 [[↓Results]](https://drive.google.com/open?id=1Xp5U6uZeM44ShzawfuW_E-NmQ30hk-Be)<br/> (RGB)  24.38/0.7403 | (Y) 25.89/0.7651 [[↓Results]](https://drive.google.com/open?id=1WY3CcdzbRhpvDi3aGc1jAhIbeC6GUrM8)<br/> (RGB)  24.41/0.7428 |

<sup>1</sup> The official results are obtained by running the official codes and models. Note that TOFlow does not provide a strategy for border frame recovery and we simply use a `replicate` strategy for border frames. <br/>
<sup>2</sup> The converted model has slightly different results, due to different implementation. And we use `new_info` strategy for border frames. <br/>
<sup>3</sup> Y or RGB denotes the evaluation on Y (luminance) or RGB channels.