ModelZoo.md 8.52 KB
Newer Older
mashun1's avatar
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Model Zoo and Baselines

[English](ModelZoo.md) **|** [简体中文](ModelZoo_CN.md)

Download: ⏬ Google Drive: [Pretrained Models](https://drive.google.com/drive/folders/15DgDtfaLASQ3iAPJEVHQF49g9msexECG?usp=sharing) **|** [Reproduced Experiments](https://drive.google.com/drive/folders/1XN4WXKJ53KQ0Cu0Yv-uCt8DZWq6uufaP?usp=sharing)
⏬ 百度网盘: [预训练模型](https://pan.baidu.com/s/1R6Nc4v3cl79XPAiK0Toe7g) **|** [复现实验](https://pan.baidu.com/s/1UElD6q8sVAgn_cxeBDOlvQ)

📈 [Training curves in wandb](https://app.wandb.ai/xintao/basicsr)

---

We provide:

1. Official models converted directly from official released models
1. Reproduced models with `BasicSR`. Pre-trained models and log examples are provided

You can put the downloaded models in the `experiments/pretrained_models` folder.

**[Download official pre-trained models]** ([Google Drive](https://drive.google.com/drive/folders/15DgDtfaLASQ3iAPJEVHQF49g9msexECG?usp=sharing), [百度网盘](https://pan.baidu.com/s/1R6Nc4v3cl79XPAiK0Toe7g))

You can use the script to download pre-trained models from Google Drive.

```python
python scripts/download_pretrained_models.py ESRGAN
# method can be ESRGAN, EDVR, StyleGAN, EDSR, DUF, DFDNet, dlib
```

**[Download reproduced models and logs]** ([Google Drive](https://drive.google.com/drive/folders/1XN4WXKJ53KQ0Cu0Yv-uCt8DZWq6uufaP?usp=sharing), [百度网盘](https://pan.baidu.com/s/1UElD6q8sVAgn_cxeBDOlvQ))

In addition, we upload the training process and curves in [wandb](https://www.wandb.com/).

**[Training curves in wandb](https://app.wandb.ai/xintao/basicsr)**

<p align="center">
<a href="https://app.wandb.ai/xintao/basicsr" target="_blank">
   <img src="../assets/wandb.jpg" height="350">
</a></p>

#### Contents

1. [Image Super-Resolution](#Image-Super-Resolution)
    1. [Image SR Official Models](#Image-SR-Official-Models)
    1. [Image SR Reproduced Models](#Image-SR-Reproduced-Models)
1. [Video Super-Resolution](#Video-Super-Resolution)

## Image Super-Resolution

When evaluation:

- We crop `scale` border pixels in each border
- Evaluated on RGB channels

### Image SR Official Models

|Exp Name         | Set5 (PSNR/SSIM)     | Set14 (PSNR/SSIM)   |DIV2K100 (PSNR/SSIM)   |
| :------------- | :----------:    | :----------:   |:----------:   |
| EDSR_Mx2_f64b16_DIV2K_official-3ba7b086 | 35.7768 / 0.9442 | 31.4966 / 0.8939 | 34.6291 / 0.9373 |
| EDSR_Mx3_f64b16_DIV2K_official-6908f88a | 32.3597 / 0.903 | 28.3932 / 0.8096 | 30.9438 / 0.8737 |
| EDSR_Mx4_f64b16_DIV2K_official-0c287733 | 30.1821 / 0.8641 | 26.7528 / 0.7432 | 28.9679 / 0.8183 |
| EDSR_Lx2_f256b32_DIV2K_official-be38e77d | 35.9979 / 0.9454 | 31.8583 / 0.8971 | 35.0495 / 0.9407 |
| EDSR_Lx3_f256b32_DIV2K_official-3660f70d | 32.643 / 0.906 | 28.644 / 0.8152 | 31.28 / 0.8798 |
| EDSR_Lx4_f256b32_DIV2K_official-76ee1c8f | 30.5499 / 0.8701 | 27.0011 / 0.7509 | 29.277 / 0.8266 |

### Image SR Reproduced Models

Experiment name conventions are in [Config.md](Config.md).

|Exp Name         | Set5 (PSNR/SSIM)     | Set14 (PSNR/SSIM)   |DIV2K100 (PSNR/SSIM)   |
| :------------- | :----------:    | :----------:   |:----------:   |
| 001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb | 30.2468 / 0.8651 | 26.7817 / 0.7451 | 28.9967 / 0.8195 |
| 002_MSRResNet_x2_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb | 35.7483 / 0.9442 | 31.5403 / 0.8937 |34.6699 / 0.9377|
| 003_MSRResNet_x3_f64b16_DIV2K_1000k_B16G1_001pretrain_wandb | 32.4038 / 0.9032| 28.4418 / 0.8106|30.9726 / 0.8743 |
| 004_MSRGAN_x4_f64b16_DIV2K_400k_B16G1_wandb | 28.0158 / 0.8087|24.7474 / 0.6623 | 26.6504 / 0.7462|
| | | | |
| 201_EDSR_Mx2_f64b16_DIV2K_300k_B16G1_wandb | 35.7395 / 0.944|31.4348 / 0.8934 |34.5798 / 0.937 |
| 202_EDSR_Mx3_f64b16_DIV2K_300k_B16G1_201pretrain_wandb|32.315 / 0.9026 |28.3866 / 0.8088 |30.9095 / 0.8731|
| 203_EDSR_Mx4_f64b16_DIV2K_300k_B16G1_201pretrain_wandb|30.1726 / 0.8641 |26.721 / 0.743 |28.9506 / 0.818|
| 204_EDSR_Lx2_f256b32_DIV2K_300k_B16G1_wandb | 35.9792 / 0.9453 | 31.7284 / 0.8959 | 34.9544 / 0.9399 |
| 205_EDSR_Lx3_f256b32_DIV2K_300k_B16G1_204pretrain_wandb | 32.6467 / 0.9057 | 28.6859 / 0.8152 | 31.2664 / 0.8793 |
| 206_EDSR_Lx4_f256b32_DIV2K_300k_B16G1_204pretrain_wandb | 30.4718 / 0.8695 | 26.9616 / 0.7502 | 29.2621 / 0.8265 |

## Video Super-Resolution

#### Evaluation

In the evaluation, we include all the input frames and do not crop any border pixels unless otherwise stated.<br/>
We do not use the self-ensemble (flip testing) strategy and any other post-processing methods.

## EDVR

**Name convention**<br/>
EDVR\_(training dataset)\_(track name)\_(model complexity)

- track name. There are four tracks in the NTIRE 2019 Challenges on Video Restoration and Enhancement:
  - **SR**: super-resolution with a fixed downsampling kernel (MATLAB bicubic downsampling kernel is frequently used). Most of the previous video SR methods focus on this setting.
  - **SRblur**: the inputs are also degraded with motion blur.
  - **deblur**: standard deblurring (motion blur).
  - **deblurcomp**: motion blur + video compression artifacts.
- model complexity
  - **L** (Large): # of channels = 128, # of back residual blocks = 40. This setting is used in our competition submission.
  - **M** (Moderate): # of channels = 64, # of back residual blocks = 10.

| Model name |[Test Set] PSNR/SSIM |
|:----------:|:----------:|
| EDVR_Vimeo90K_SR_L | [Vid4] (Y<sup>1</sup>) 27.35/0.8264 [[↓Results]](https://drive.google.com/open?id=14nozpSfe9kC12dVuJ9mspQH5ZqE4mT9K)<br/> (RGB) 25.83/0.8077|
| EDVR_REDS_SR_M | [REDS] (RGB) 30.53/0.8699 [[↓Results]](https://drive.google.com/open?id=1Mek3JIxkjJWjhZhH4qVwTXnRZutKUtC-)|
| EDVR_REDS_SR_L | [REDS] (RGB) 31.09/0.8800 [[↓Results]](https://drive.google.com/open?id=1h6E0QVZyJ5SBkcnYaT1puxYYPVbPsTLt)|
| EDVR_REDS_SRblur_L | [REDS] (RGB) 28.88/0.8361 [[↓Results]](https://drive.google.com/open?id=1-8MNkQuMVMz30UilB9m_d0SXicwFEPZH)|
| EDVR_REDS_deblur_L | [REDS] (RGB) 34.80/0.9487 [[↓Results]](https://drive.google.com/open?id=133wCHTwiiRzenOEoStNbFuZlCX8Jn2at)|
| EDVR_REDS_deblurcomp_L | [REDS] (RGB) 30.24/0.8567 [[↓Results]](https://drive.google.com/open?id=1VjC4fXBXy0uxI8Kwxh-ijj4PZkfsLuTX)  |

<sup>1</sup> Y or RGB denotes the evaluation on Y (luminance) or RGB channels.

#### Stage 2 models for the NTIRE19 Competition

| Model name |[Test Set] PSNR/SSIM |
|:----------:|:----------:|
| EDVR_REDS_SR_Stage2 | [REDS] (RGB) / [[↓Results]]()|
| EDVR_REDS_SRblur_Stage2 | [REDS] (RGB) / [[↓Results]]()|
| EDVR_REDS_deblur_Stage2 | [REDS] (RGB) / [[↓Results]]()|
| EDVR_REDS_deblurcomp_Stage2 | [REDS] (RGB) / [[↓Results]]()  |

## DUF

The models are converted from the [officially released models](https://github.com/yhjo09/VSR-DUF). <br/>

| Model name | [Test Set] PSNR/SSIM<sup>1</sup> | Official Results<sup>2</sup> |
|:----------:|:----------:|:----------:|
| DUF_x4_52L_official<sup>3</sup> | [Vid4] (Y<sup>4</sup>) 27.33/0.8319 [[↓Results]](https://drive.google.com/open?id=1U9xGhlDSpPPQvKN0BAzXfjUCvaFxwsQf)<br/> (RGB) 25.80/0.8138   | (Y) 27.33/0.8318 [[↓Results]](https://drive.google.com/open?id=1HUmf__cSL7td7J4cXo2wvbVb14Y8YG2j)<br/> (RGB) 25.79/0.8136 |
| DUF_x4_28L_official | [Vid4]  | |
| DUF_x4_16L_official | [Vid4]  | |
| DUF_x3_16L_official | [Vid4]  | |
| DUF_x2_16L_official | [Vid4]  | |

<sup>1</sup> We crop eight pixels near image boundary for DUF due to its severe boundary effects. <br/>
<sup>2</sup> The official results are obtained by running the official codes and models. <br/>
<sup>3</sup> Different from the official codes, where `zero padding` is used for border frames, we use `new_info` strategy. <br/>
<sup>4</sup> Y or RGB denotes the evaluation on Y (luminance) or RGB channels.

## TOF

The models are converted from the [officially released models](https://github.com/anchen1011/toflow).<br/>

| Model name | [Test Set] PSNR/SSIM | Official Results<sup>1</sup> |
|:----------:|:----------:|:----------:|
| TOF_official<sup>2</sup> | [Vid4] (Y<sup>3</sup>) 25.86/0.7626 [[↓Results]](https://drive.google.com/open?id=1Xp5U6uZeM44ShzawfuW_E-NmQ30hk-Be)<br/> (RGB)  24.38/0.7403 | (Y) 25.89/0.7651 [[↓Results]](https://drive.google.com/open?id=1WY3CcdzbRhpvDi3aGc1jAhIbeC6GUrM8)<br/> (RGB)  24.41/0.7428 |

<sup>1</sup> The official results are obtained by running the official codes and models. Note that TOFlow does not provide a strategy for border frame recovery and we simply use a `replicate` strategy for border frames. <br/>
<sup>2</sup> The converted model has slightly different results, due to different implementation. And we use `new_info` strategy for border frames. <br/>
<sup>3</sup> Y or RGB denotes the evaluation on Y (luminance) or RGB channels.