run.sh 9.47 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
#!/bin/bash

# Copyright 2019 Mobvoi Inc. All Rights Reserved.
. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
Sugon_ldc's avatar
Sugon_ldc committed
8
export HIP_VISIBLE_DEVICES="0,1,2,3"
Sugon_ldc's avatar
Sugon_ldc committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl
# communication. More details can be found in
# https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
# export NCCL_SOCKET_IFNAME=ens4f1
export NCCL_DEBUG=INFO
stage=0 # start from 0 if you need to start from data preparation
stop_stage=5

# The num of machines(nodes) for multi-machine training, 1 is for one machine.
# NFS is required if num_nodes > 1.
num_nodes=1

# The rank of each node or machine, which ranges from 0 to `num_nodes - 1`.
# You should set the node_rank=0 on the first machine, set the node_rank=1
# on the second machine, and so on.
node_rank=0
# The aishell dataset location, please change this to your own path
# make sure of using absolute path. DO-NOT-USE relatvie path!
Sugon_ldc's avatar
Sugon_ldc committed
27
data=/datapath/
Sugon_ldc's avatar
Sugon_ldc committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
data_url=www.openslr.org/resources/33

nj=16
dict=data/dict/lang_char.txt

# data_type can be `raw` or `shard`. Typically, raw is used for small dataset,
# `shard` is used for large dataset which is over 1k hours, and `shard` is
# faster on reading data and training.
data_type=raw
num_utts_per_shard=1000

train_set=train
# Optional train_config
# 1. conf/train_transformer.yaml: Standard transformer
# 2. conf/train_conformer.yaml: Standard conformer
# 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer
# 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer
# 5. conf/train_u2++_conformer.yaml: U2++ conformer
# 6. conf/train_u2++_transformer.yaml: U2++ transformer
train_config=conf/train_conformer.yaml
cmvn=true
dir=exp/conformer
checkpoint=

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=30
decode_modes="attention_rescoring"

. tools/parse_options.sh || exit 1;

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  echo "stage -1: Data Download"
  local/download_and_untar.sh ${data} ${data_url} data_aishell
  local/download_and_untar.sh ${data} ${data_url} resource_aishell
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  # Data preparation
  local/aishell_data_prep.sh ${data}/data_aishell/wav \
    ${data}/data_aishell/transcript
fi


if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  # remove the space between the text labels for Mandarin dataset
  for x in train dev test; do
    cp data/${x}/text data/${x}/text.org
    paste -d " " <(cut -f 1 -d" " data/${x}/text.org) \
      <(cut -f 2- -d" " data/${x}/text.org | tr -d " ") \
      > data/${x}/text
    rm data/${x}/text.org
  done

  tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \
    --in_scp data/${train_set}/wav.scp \
    --out_cmvn data/$train_set/global_cmvn
fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  echo "Make a dictionary"
  mkdir -p $(dirname $dict)
  echo "<blank> 0" > ${dict}  # 0 is for "blank" in CTC
  echo "<unk> 1"  >> ${dict}  # <unk> must be 1
  tools/text2token.py -s 1 -n 1 data/train/text | cut -f 2- -d" " \
    | tr " " "\n" | sort | uniq | grep -a -v -e '^\s*$' | \
    awk '{print $0 " " NR+1}' >> ${dict}
  num_token=$(cat $dict | wc -l)
  echo "<sos/eos> $num_token" >> $dict
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  echo "Prepare data, prepare required format"
  for x in dev test ${train_set}; do
    if [ $data_type == "shard" ]; then
      tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \
        --num_threads 16 data/$x/wav.scp data/$x/text \
        $(realpath data/$x/shards) data/$x/data.list
    else
      tools/make_raw_list.py data/$x/wav.scp data/$x/text \
        data/$x/data.list
    fi
  done
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  mkdir -p $dir
  # You have to rm `INIT_FILE` manually when you resume or restart a
  # multi-machine training.
  INIT_FILE=$dir/ddp_init
  init_method=file://$(readlink -f $INIT_FILE)
  echo "$0: init method is $init_method"
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  # Use "nccl" if it works, otherwise use "gloo"
  dist_backend="nccl"
  world_size=`expr $num_gpus \* $num_nodes`
  echo "total gpus is: $world_size"
  cmvn_opts=
  $cmvn && cp data/${train_set}/global_cmvn $dir
  $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn"

  # train.py rewrite $train_config to $dir/train.yaml with model input
  # and output dimension, and $dir/train.yaml will be used for inference
  # and export.
  for ((i = 0; i < $num_gpus; ++i)); do
  {
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    # Rank of each gpu/process used for knowing whether it is
    # the master of a worker.
    rank=`expr $node_rank \* $num_gpus + $i`
    python wenet/bin/train.py --gpu $gpu_id \
      --config $train_config \
      --data_type $data_type \
      --symbol_table $dict \
      --train_data data/$train_set/data.list \
      --cv_data data/dev/data.list \
      ${checkpoint:+--checkpoint $checkpoint} \
      --model_dir $dir \
      --ddp.init_method $init_method \
      --ddp.world_size $world_size \
      --ddp.rank $rank \
      --ddp.dist_backend $dist_backend \
      --num_workers 1 \
      $cmvn_opts \
      --pin_memory
  } &
  done
  wait
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  # Test model, please specify the model you want to test by --checkpoint
  if [ ${average_checkpoint} == true ]; then
    decode_checkpoint=$dir/avg_${average_num}.pt
    echo "do model average and final checkpoint is $decode_checkpoint"
    python wenet/bin/average_model.py \
      --dst_model $decode_checkpoint \
      --src_path $dir  \
      --num ${average_num} \
      --val_best
  fi
  # Please specify decoding_chunk_size for unified streaming and
  # non-streaming model. The default value is -1, which is full chunk
  # for non-streaming inference.
  decoding_chunk_size=
  ctc_weight=0.5
  reverse_weight=0.0
  for mode in ${decode_modes}; do
  {
    test_dir=$dir/test_${mode}
    mkdir -p $test_dir
    python wenet/bin/recognize.py --gpu 0 \
      --mode $mode \
      --config $dir/train.yaml \
      --data_type $data_type \
      --test_data data/test/data.list \
      --checkpoint $decode_checkpoint \
      --beam_size 10 \
      --batch_size 1 \
      --penalty 0.0 \
      --dict $dict \
      --ctc_weight $ctc_weight \
      --reverse_weight $reverse_weight \
      --result_file $test_dir/text \
      ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
    python tools/compute-wer.py --char=1 --v=1 \
      data/test/text $test_dir/text > $test_dir/wer
  } &
  done
  wait
fi


if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  # Export the best model you want
  python wenet/bin/export_jit.py \
    --config $dir/train.yaml \
    --checkpoint $dir/avg_${average_num}.pt \
    --output_file $dir/final.zip \
    --output_quant_file $dir/final_quant.zip
fi

# Optionally, you can add LM and test it with runtime.
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
  # 7.1 Prepare dict
  unit_file=$dict
  mkdir -p data/local/dict
  cp $unit_file data/local/dict/units.txt
  tools/fst/prepare_dict.py $unit_file ${data}/resource_aishell/lexicon.txt \
    data/local/dict/lexicon.txt
  # 7.2 Train lm
  lm=data/local/lm
  mkdir -p $lm
  tools/filter_scp.pl data/train/text \
    $data/data_aishell/transcript/aishell_transcript_v0.8.txt > $lm/text
  local/aishell_train_lms.sh
  # 7.3 Build decoding TLG
  tools/fst/compile_lexicon_token_fst.sh \
    data/local/dict data/local/tmp data/local/lang
  tools/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1;
  # 7.4 Decoding with runtime
  chunk_size=-1
  ./tools/decode.sh --nj 16 \
    --beam 15.0 --lattice_beam 7.5 --max_active 7000 \
    --blank_skip_thresh 0.98 --ctc_weight 0.5 --rescoring_weight 1.0 \
    --chunk_size $chunk_size \
    --fst_path data/lang_test/TLG.fst \
    --dict_path data/lang_test/words.txt \
    data/test/wav.scp data/test/text $dir/final.zip \
    data/lang_test/units.txt $dir/lm_with_runtime
  # Please see $dir/lm_with_runtime for wer
fi

# Optionally, you can decode with k2 hlg
if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ]; then
  if [ ! -f data/local/lm/lm.arpa ]; then
    echo "Please run prepare dict and train lm in Stage 7" || exit 1;
  fi

  # 8.1 Build decoding HLG
  required="data/local/hlg/HLG.pt data/local/hlg/words.txt"
  for f in $required; do
    if [ ! -f $f ]; then
      tools/k2/make_hlg.sh data/local/dict/ data/local/lm/ data/local/hlg
      break
    fi
  done

  # 8.2 Decode using HLG
  decoding_chunk_size=
  lm_scale=0.7
  decoder_scale=0.1
  r_decoder_scale=0.7
  for mode in hlg_onebest hlg_rescore; do
  {
    test_dir=$dir/test_${mode}
    mkdir -p $test_dir
    python wenet/bin/recognize.py --gpu 0 \
      --mode $mode \
      --config $dir/train.yaml \
      --data_type $data_type \
      --test_data data/test/data.list \
      --checkpoint $decode_checkpoint \
      --beam_size 10 \
      --batch_size 16 \
      --penalty 0.0 \
      --dict $dict \
      --word data/local/hlg/words.txt \
      --hlg data/local/hlg/HLG.pt \
      --lm_scale $lm_scale \
      --decoder_scale $decoder_scale \
      --r_decoder_scale $r_decoder_scale \
      --result_file $test_dir/text \
      ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
    python tools/compute-wer.py --char=1 --v=1 \
      data/test/text $test_dir/text > $test_dir/wer
  }
  done
fi