executor.py 7.78 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
from contextlib import nullcontext

# if your python version < 3.7 use the below one
# from contextlib import suppress as nullcontext
import torch
from torch.nn.utils import clip_grad_norm_
from wenet.utils.global_vars import get_global_steps, global_steps_inc, get_num_trained_samples, num_trained_samples_inc
import time

class Executor:

    def __init__(self):
        self.step = 0

    def train(self, model, optimizer, scheduler, data_loader, device, writer,
              args, scaler):
        ''' Train one epoch
        '''
        model.train()
        clip = args.get('grad_clip', 50.0)
        log_interval = args.get('log_interval', 10)
        rank = args.get('rank', 0)
        epoch = args.get('epoch', 0)
        accum_grad = args.get('accum_grad', 1)
        is_distributed = args.get('is_distributed', True)
        use_amp = args.get('use_amp', False)
        logging.info('using accumulate grad, new batch size is {} times'
                     ' larger than before'.format(accum_grad))
        if use_amp:
            assert scaler is not None
        # A context manager to be used in conjunction with an instance of
        # torch.nn.parallel.DistributedDataParallel to be able to train
        # with uneven inputs across participating processes.
        if isinstance(model, torch.nn.parallel.DistributedDataParallel):
            model_context = model.join
        else:
            model_context = nullcontext
        num_seen_utts = 0
        with model_context():
            for batch_idx, batch in enumerate(data_loader):
                key, feats, target, feats_lengths, target_lengths = batch
                feats = feats.to(device)
                target = target.to(device)
                feats_lengths = feats_lengths.to(device)
                target_lengths = target_lengths.to(device)
                num_utts = target_lengths.size(0)
                if num_utts == 0:
                    continue
                context = None
                # Disable gradient synchronizations across DDP processes.
                # Within this context, gradients will be accumulated on module
                # variables, which will later be synchronized.
                if is_distributed and batch_idx % accum_grad != 0:
                    context = model.no_sync
                # Used for single gpu training and DDP gradient synchronization
                # processes.
                else:
                    context = nullcontext
                with context():
                    # autocast context
                    # The more details about amp can be found in
                    # https://pytorch.org/docs/stable/notes/amp_examples.html
                    with torch.cuda.amp.autocast(scaler is not None):
                        loss_dict = model(feats, feats_lengths, target,
                                          target_lengths)
                        loss = loss_dict['loss'] / accum_grad
                    if use_amp:
                        scaler.scale(loss).backward()
                    else:
                        loss.backward()

                num_seen_utts += num_utts
                global_steps_inc()
                num_trained_samples_inc(num_utts)
                if batch_idx % accum_grad == 0:
                    #if rank == 0 and writer is not None:
                    #    writer.add_scalar('train_loss', loss, self.step)
                    # Use mixed precision training
                    if use_amp:
                        scaler.unscale_(optimizer)
                        grad_norm = clip_grad_norm_(model.parameters(), clip)
                        # Must invoke scaler.update() if unscale_() is used in
                        # the iteration to avoid the following error:
                        #   RuntimeError: unscale_() has already been called
                        #   on this optimizer since the last update().
                        # We don't check grad here since that if the gradient
                        # has inf/nan values, scaler.step will skip
                        # optimizer.step().
                        scaler.step(optimizer)
                        scaler.update()
                    else:
                        grad_norm = clip_grad_norm_(model.parameters(), clip)
                        if torch.isfinite(grad_norm):
                            optimizer.step()
                    optimizer.zero_grad()
                    scheduler.step()
                    self.step += 1
                #if batch_idx % log_interval == 0:
                #    lr = optimizer.param_groups[0]['lr']
                #    log_str = 'TRAIN Batch {}/{} loss {:.6f} '.format(
                #        epoch, batch_idx,
                #        loss.item() * accum_grad)
                #    for name, value in loss_dict.items():
                #        if name != 'loss' and value is not None:
                #            log_str += '{} {:.6f} '.format(name, value.item())
                #    log_str += 'lr {:.8f} rank {}'.format(lr, rank)
                #    logging.debug(log_str)
                lr = optimizer.param_groups[0]['lr']
                loss_str = "%.4f" % (loss.item() * accum_grad)
                global_steps = get_global_steps()
                num_trained_samples = get_num_trained_samples()
                step_output = f'[PerfLog] {{"event": "STEP_END", "value": {{"epoch": {epoch+1}, "global_steps": {global_steps},"loss": {loss_str},"num_trained_samples": {num_trained_samples}, "learning_rate": {lr:.9f}}}}}'
                logging.info(f'rank {rank}: ' + step_output)


    def cv(self, model, data_loader, device, args):
        ''' Cross validation on
        '''
        model.eval()
        rank = args.get('rank', 0)
        epoch = args.get('epoch', 0)
        log_interval = args.get('log_interval', 10)
        # in order to avoid division by 0
        num_seen_utts = 1
        total_loss = 0.0
        with torch.no_grad():
            for batch_idx, batch in enumerate(data_loader):
                key, feats, target, feats_lengths, target_lengths = batch
                feats = feats.to(device)
                target = target.to(device)
                feats_lengths = feats_lengths.to(device)
                target_lengths = target_lengths.to(device)
                num_utts = target_lengths.size(0)
                if num_utts == 0:
                    continue
                loss_dict = model(feats, feats_lengths, target, target_lengths)
                loss = loss_dict['loss']
                if torch.isfinite(loss):
                    num_seen_utts += num_utts
                    total_loss += loss.item() * num_utts
                if batch_idx % log_interval == 0:
                    log_str = 'CV Batch {}/{} loss {:.6f} '.format(
                        epoch, batch_idx, loss.item())
                    for name, value in loss_dict.items():
                        if name != 'loss' and value is not None:
                            log_str += '{} {:.6f} '.format(name, value.item())
                    log_str += 'history loss {:.6f}'.format(total_loss /
                                                            num_seen_utts)
                    log_str += ' rank {}'.format(rank)
                    logging.debug(log_str)
        return total_loss, num_seen_utts