decoder_layer.py 5.45 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) 2019 Shigeki Karita
#               2020 Mobvoi Inc (Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Decoder self-attention layer definition."""
from typing import Optional, Tuple

import torch
from torch import nn


class DecoderLayer(nn.Module):
    """Single decoder layer module.

    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` instance can be used as the argument.
        src_attn (torch.nn.Module): Inter-attention module instance.
            `MultiHeadedAttention` instance can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward` instance can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool):
            True: use layer_norm before each sub-block.
            False: to use layer_norm after each sub-block.
        concat_after (bool): Whether to concat attention layer's inpu
            and output.
            True: x -> x + linear(concat(x, att(x)))
            False: x -> x + att(x)
    """
    def __init__(
        self,
        size: int,
        self_attn: nn.Module,
        src_attn: nn.Module,
        feed_forward: nn.Module,
        dropout_rate: float,
        normalize_before: bool = True,
        concat_after: bool = False,
    ):
        """Construct an DecoderLayer object."""
        super().__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.norm1 = nn.LayerNorm(size, eps=1e-5)
        self.norm2 = nn.LayerNorm(size, eps=1e-5)
        self.norm3 = nn.LayerNorm(size, eps=1e-5)
        self.dropout = nn.Dropout(dropout_rate)
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear1 = nn.Linear(size + size, size)
            self.concat_linear2 = nn.Linear(size + size, size)
        else:
            self.concat_linear1 = nn.Identity()
            self.concat_linear2 = nn.Identity()

    def forward(
        self,
        tgt: torch.Tensor,
        tgt_mask: torch.Tensor,
        memory: torch.Tensor,
        memory_mask: torch.Tensor,
        cache: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """Compute decoded features.

        Args:
            tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
            tgt_mask (torch.Tensor): Mask for input tensor
                (#batch, maxlen_out).
            memory (torch.Tensor): Encoded memory
                (#batch, maxlen_in, size).
            memory_mask (torch.Tensor): Encoded memory mask
                (#batch, maxlen_in).
            cache (torch.Tensor): cached tensors.
                (#batch, maxlen_out - 1, size).

        Returns:
            torch.Tensor: Output tensor (#batch, maxlen_out, size).
            torch.Tensor: Mask for output tensor (#batch, maxlen_out).
            torch.Tensor: Encoded memory (#batch, maxlen_in, size).
            torch.Tensor: Encoded memory mask (#batch, maxlen_in).

        """
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)

        if cache is None:
            tgt_q = tgt
            tgt_q_mask = tgt_mask
        else:
            # compute only the last frame query keeping dim: max_time_out -> 1
            assert cache.shape == (
                tgt.shape[0],
                tgt.shape[1] - 1,
                self.size,
            ), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
            tgt_q = tgt[:, -1:, :]
            residual = residual[:, -1:, :]
            tgt_q_mask = tgt_mask[:, -1:, :]

        if self.concat_after:
            tgt_concat = torch.cat(
                (tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0]), dim=-1)
            x = residual + self.concat_linear1(tgt_concat)
        else:
            x = residual + self.dropout(
                self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
        if not self.normalize_before:
            x = self.norm1(x)

        residual = x
        if self.normalize_before:
            x = self.norm2(x)
        if self.concat_after:
            x_concat = torch.cat(
                (x, self.src_attn(x, memory, memory, memory_mask)[0]), dim=-1)
            x = residual + self.concat_linear2(x_concat)
        else:
            x = residual + self.dropout(
                self.src_attn(x, memory, memory, memory_mask)[0])
        if not self.normalize_before:
            x = self.norm2(x)

        residual = x
        if self.normalize_before:
            x = self.norm3(x)
        x = residual + self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm3(x)

        if cache is not None:
            x = torch.cat([cache, x], dim=1)

        return x, tgt_mask, memory, memory_mask