onnx2horizonbin.py 21.3 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# Copyright (c) 2022, Horizon Inc. Xingchen Song (sxc19@tsinghua.org.cn)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NOTE(xcsong): Currently, we only support
1. specific conformer encoder architecture, see:
    encoder: conformer
    encoder_conf:
      activation_type: **must be** relu
      attention_heads: 2 or 4 or 8 or any number divisible by output_size
      causal: **must be** true
      cnn_module_kernel: 1 ~ 7
      cnn_module_norm: **must be** batch_norm
      input_layer: **must be** conv2d8
      linear_units: 1 ~ 2048
      normalize_before: **must be** true
      num_blocks: 1 ~ 12
      output_size: 1 ~ 512
      pos_enc_layer_type: **must be** no_pos
      selfattention_layer_type: **must be** selfattn
      use_cnn_module: **must be** true
      use_dynamic_chunk: **must be** true
      use_dynamic_left_chunk: **must be** true

2. specific decoding method: ctc_greedy_search
"""

import argparse
import copy
import logging
import os
import sys
import random
import torch
import yaml
import numpy as np

from torch.utils.data import DataLoader

from wenet.utils.common import remove_duplicates_and_blank
from wenet.dataset.dataset import Dataset
from wenet.utils.checkpoint import load_checkpoint
from wenet.utils.file_utils import read_symbol_table
from wenet.utils.init_model import init_model
from wenet.bin.export_onnx_cpu import to_numpy
from wenet.bin.export_onnx_bpu import export_encoder, export_ctc


try:
    import hbdk  # noqa: F401
    import horizon_nn  # noqa: F401
    from horizon_tc_ui import HB_ONNXRuntime
except ImportError:
    print('Please install hbdk,horizon_nn,horizon_tc_ui !')
    sys.exit(1)


logger = logging.getLogger(__file__)
logger.setLevel(logging.INFO)


def save_data(tensor, dirs, prefix):
    if tensor.requires_grad:
        data = tensor.detach().numpy().astype(np.float32)
    else:
        data = tensor.numpy().astype(np.float32)
    os.makedirs(dirs, exist_ok=True)
    data.tofile(dirs + "/" + prefix + ".bin")


def make_calibration_data(enc, args, conf):
    conf['shuffle'] = True
    logger.info(conf)
    dataset = Dataset(
        "shard", args.cali_datalist, args.symbol_table, conf,
        bpe_model=args.bpe_model, non_lang_syms=None, partition=False)
    dataloader = DataLoader(dataset, batch_size=None, num_workers=0)

    subsampling = enc.embed.subsampling_rate
    context = enc.embed.right_context + 1  # Add current frame
    stride = subsampling * args.chunk_size
    decoding_window = (args.chunk_size - 1) * subsampling + context
    required_cache_size = args.chunk_size * args.num_decoding_left_chunks
    num_layers = len(enc.encoders)
    head, d_k = enc.encoders[0].self_attn.h, enc.encoders[0].self_attn.d_k
    dim, lorder = enc._output_size, enc.encoders[0].conv_module.lorder
    chunk_size, left_chunks = args.chunk_size, args.num_decoding_left_chunks
    cal_data_dir = os.path.join(args.output_dir, 'cal_data_dir')
    for batch_idx, batch in enumerate(dataloader):
        if batch_idx >= args.max_samples:
            break
        if batch_idx % 100 == 0:
            logger.info("processed {} samples.".format(batch_idx))
        keys, feats, target, feats_lengths, target_lengths = batch
        num_frames, prefix = feats.size(1), keys[0]
        att_cache = torch.zeros(
            [1, head * num_layers, d_k * 2, required_cache_size],
            dtype=feats.dtype, device=feats.device)
        att_mask = torch.ones(
            [1, head, chunk_size, required_cache_size + chunk_size],
            dtype=feats.dtype, device=feats.device)
        att_mask[:, :, :, :required_cache_size] = 0
        cnn_cache = torch.zeros(
            [1, dim, num_layers, lorder],
            dtype=feats.dtype, device=feats.device)

        # Feed forward overlap input step by step
        random_high = (num_frames - context) // stride
        num_rand = random.randint(0, random_high)
        for i, cur in enumerate(range(0, num_frames - context + 1, stride)):
            att_mask[:, :, :, -(chunk_size * (i + 1)):] = 1
            end = min(cur + decoding_window, num_frames)
            chunk = feats[:, cur:end, :].unsqueeze(0)  # (1, 1, window, mel)
            if end == num_frames and end - cur < decoding_window:  # last chunk
                pad_len = decoding_window - (end - cur)  # 67 - (35)
                pad_chunk = torch.zeros((1, 1, pad_len, chunk.size(-1)),
                                        device=feats.device)
                chunk = torch.cat((chunk, pad_chunk),
                                  dim=2)  # (1, 1, win, mel)
                if pad_len >= subsampling:
                    att_mask[:, :, :, -(pad_len // subsampling):] = 0
            if i == num_rand:
                save_data(chunk, "{}/chunk".format(cal_data_dir),
                          prefix + "." + str(i))
                save_data(att_cache, "{}/att_cache".format(cal_data_dir),
                          prefix + "." + str(i))
                save_data(cnn_cache, "{}/cnn_cache".format(cal_data_dir),
                          prefix + "." + str(i))
                save_data(att_mask, "{}/att_mask".format(cal_data_dir),
                          prefix + "." + str(i))
            (y, att_cache, cnn_cache) = enc.forward(
                xs=chunk, att_cache=att_cache,
                cnn_cache=cnn_cache, att_mask=att_mask)
            # NOTE(xcsong): It's fast to calibrate ctc.onnx,
            #   so it's okay to save all chunks
            save_data(y, "{}/hidden".format(cal_data_dir),
                      prefix + "." + str(i))


def check_wer(enc, ctc, args, conf):
    conf['shuffle'] = False
    dataset = Dataset(
        "shard", args.wer_datalist, args.symbol_table, conf,
        bpe_model=args.bpe_model, non_lang_syms=None, partition=False)
    dataloader = DataLoader(dataset, batch_size=None, num_workers=0)
    char_dict = {v: k for k, v in args.symbol_table.items()}
    eos = len(char_dict) - 1

    enc_session = HB_ONNXRuntime(
        model_file=args.output_dir +
        "/hb_makertbin_output_encoder/encoder_quantized_model.onnx")
    ctc_session = HB_ONNXRuntime(
        model_file=args.output_dir +
        "/hb_makertbin_output_ctc/ctc_quantized_model.onnx")
    torch_file = open(args.output_dir + "/torch_text", 'w', encoding="utf-8")
    onnx_file = open(args.output_dir + "/onnx_text", 'w', encoding="utf-8")
    subsampling = enc.embed.subsampling_rate
    context = enc.embed.right_context + 1  # Add current frame
    stride = subsampling * args.chunk_size
    decoding_window = (args.chunk_size - 1) * subsampling + context
    required_cache_size = args.chunk_size * args.num_decoding_left_chunks
    num_layers = len(enc.encoders)
    head, d_k = enc.encoders[0].self_attn.h, enc.encoders[0].self_attn.d_k
    dim, lorder = enc._output_size, enc.encoders[0].conv_module.lorder
    chunk_size, left_chunks = args.chunk_size, args.num_decoding_left_chunks
    for batch_idx, batch in enumerate(dataloader):
        keys, feats, target, feats_lengths, target_lengths = batch
        num_frames, prefix = feats.size(1), keys[0]
        att_cache = torch.zeros(
            [1, head * num_layers, d_k * 2, required_cache_size],
            dtype=feats.dtype, device=feats.device)
        att_mask = torch.ones(
            [1, head, chunk_size, required_cache_size + chunk_size],
            dtype=feats.dtype, device=feats.device)
        att_mask[:, :, :, :required_cache_size] = 0
        cnn_cache = torch.zeros(
            [1, dim, num_layers, lorder],
            dtype=feats.dtype, device=feats.device)
        onnx_att_cache = to_numpy(att_cache)
        onnx_cnn_cache = to_numpy(cnn_cache)

        # Feed forward overlap input step by step
        torch_out, onnx_out = [], []
        for i, cur in enumerate(range(0, num_frames - context + 1, stride)):
            att_mask[:, :, :, -(chunk_size * (i + 1)):] = 1
            end = min(cur + decoding_window, num_frames)
            chunk = feats[:, cur:end, :].unsqueeze(0)  # (1, 1, window, mel)
            if end == num_frames and end - cur < decoding_window:  # last chunk
                pad_len = decoding_window - (end - cur)  # 67 - (35)
                pad_chunk = torch.zeros((1, 1, pad_len, chunk.size(-1)),
                                        device=feats.device)
                chunk = torch.cat((chunk, pad_chunk),
                                  dim=2)  # (1, 1, win, mel)
                if pad_len >= subsampling:
                    att_mask[:, :, :, -(pad_len // subsampling):] = 0
            # Torch model
            (y, att_cache, cnn_cache) = enc.forward(
                xs=chunk, att_cache=att_cache,
                cnn_cache=cnn_cache, att_mask=att_mask)
            torch_out.append(ctc.forward(y).transpose(1, 3).squeeze(2))
            # Quantized onnx model
            ort_inputs = {
                'chunk': to_numpy(chunk), 'att_cache': onnx_att_cache,
                'cnn_cache': onnx_cnn_cache, 'att_mask': to_numpy(att_mask)}
            ort_outs = enc_session.run_feature(
                enc_session.output_names, ort_inputs, input_offset=0)
            onnx_att_cache, onnx_cnn_cache = ort_outs[1], ort_outs[2]
            onnx_y = ctc_session.run_feature(
                ctc_session.output_names, {'hidden': ort_outs[0]}, input_offset=0)
            onnx_out.append(torch.from_numpy(
                np.squeeze(onnx_y[0].transpose(0, 3, 2, 1), axis=2)))

        def post_process(list_out, file_obj, keys):
            probs = torch.cat(list_out, dim=1)
            maxlen = probs.size(1)
            topk_prob, topk_index = probs.topk(1, dim=2)  # (B, maxlen, 1)
            topk_index = topk_index.view(1, maxlen)  # (B, maxlen)
            hyps = [hyp.tolist() for hyp in topk_index]
            scores = topk_prob.max(1)
            hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps]
            for i, key in enumerate(keys):
                content = ''
                for w in hyps[i]:
                    if w == eos:
                        break
                    content += char_dict[w]
                file_obj.write('{} {}\n'.format(key, content))
            return key, content

        if len(torch_out) > 0 and len(onnx_out) > 0:
            key, content = post_process(torch_out, torch_file, keys)
            logger.info('torch: {} {}'.format(key, content))
            key, content = post_process(onnx_out, onnx_file, keys)
            logger.info('onnx : {} {}'.format(key, content))
    torch_file.close()
    onnx_file.close()


def generate_config(enc_session, ctc_session, args):
    template = """
# 模型参数组
model_parameters:
  # 原始Onnx浮点模型文件
  onnx_model: '{}'
  # 转换的目标AI芯片架构
  march: 'bernoulli2'
  # 模型转换输出的用于上板执行的模型文件的名称前缀
  output_model_file_prefix: '{}'
  # 模型转换输出的结果的存放目录
  working_dir: '{}'
  # 指定转换后混合异构模型是否保留输出各层的中间结果的能力
  layer_out_dump: False
  # 转换过程中日志生成级别
  log_level: 'debug'
# 输入信息参数组
input_parameters:
  # 原始浮点模型的输入节点名称
  input_name: '{}'
  # 原始浮点模型的输入数据格式(数量/顺序与input_name一致)
  input_type_train: '{}'
  # 原始浮点模型的输入数据排布(数量/顺序与input_name一致)
  input_layout_train: '{}'
  # 原始浮点模型的输入数据尺寸
  input_shape: '{}'
  # 网络实际执行时,输入给网络的batch_size  默认值为1
  # input_batch: 1
  # 在模型中添加的输入数据预处理方法
  norm_type: '{}'
  # 预处理方法的图像减去的均值; 如果是通道均值,value之间必须用空格分隔
  # mean_value: ''
  # 预处理方法的图像缩放比例,如果是通道缩放比例,value之间必须用空格分隔
  # scale_value: ''
  # 转换后混合异构模型需要适配的输入数据格式(数量/顺序与input_name一致)
  input_type_rt: '{}'
  # 输入数据格式的特殊制式
  input_space_and_range: ''
  # 转换后混合异构模型需要适配的输入数据排布(数量/顺序与input_name一致)
  input_layout_rt: '{}'
# 校准参数组
calibration_parameters:
  # 模型校准使用的标定样本的存放目录
  cal_data_dir: '{}'
  # 开启图片校准样本自动处理(skimage read resize到输入节点尺寸)
  preprocess_on: False
  # 校准使用的算法类型
  calibration_type: '{}'
  # max 校准方式的参数
  max_percentile: 1.0
  # 强制指定OP在CPU上运行
  run_on_cpu: '{}'
  # 强制指定OP在BPU上运行
  run_on_bpu: '{}'
# 编译参数组
compiler_parameters:
  # 编译策略选择
  compile_mode: 'latency'
  # 是否打开编译的debug信息
  debug: False
  # 模型运行核心数
  core_num: 1
  # 模型编译的优化等级选择
  optimize_level: 'O3'
"""
    output_dir = os.path.realpath(args.output_dir)
    cal_data_dir = os.path.join(output_dir, 'cal_data_dir')
    os.makedirs(cal_data_dir, exist_ok=True)
    enc_dic = enc_session.get_modelmeta().custom_metadata_map
    enc_onnx_path = os.path.join(output_dir, 'encoder.onnx')
    enc_log_path = os.path.join(output_dir, 'hb_makertbin_output_encoder')
    enc_cal_data = ";".join(
        [cal_data_dir + "/" + x for x in enc_dic['input_name'].split(';')])
    ctc_dic = ctc_session.get_modelmeta().custom_metadata_map
    ctc_onnx_path = os.path.join(output_dir, 'ctc.onnx')
    ctc_log_path = os.path.join(output_dir, 'hb_makertbin_output_ctc')
    ctc_cal_data = ";".join(
        [cal_data_dir + "/" + x for x in ctc_dic['input_name'].split(';')])
    enc_config = template.format(
        enc_onnx_path, "encoder", enc_log_path,
        enc_dic['input_name'], enc_dic['input_type'],
        enc_dic['input_layout_train'], enc_dic['input_shape'],
        enc_dic['norm_type'], enc_dic['input_type'], enc_dic['input_layout_rt'],
        enc_cal_data, args.calibration_type, args.extra_ops_run_on_cpu, "")
    ctc_config = template.format(
        ctc_onnx_path, "ctc", ctc_log_path,
        ctc_dic['input_name'], ctc_dic['input_type'],
        ctc_dic['input_layout_train'], ctc_dic['input_shape'],
        ctc_dic['norm_type'], ctc_dic['input_type'], ctc_dic['input_layout_rt'],
        ctc_cal_data, "default", "", "")
    with open(output_dir + "/config_encoder.yaml", "w") as enc_yaml:
        enc_yaml.write(enc_config)
    with open(output_dir + "/config_ctc.yaml", "w") as ctc_yaml:
        ctc_yaml.write(ctc_config)


def get_args():
    parser = argparse.ArgumentParser(description='convert onnx to horizon .bin')
    parser.add_argument('--config', required=True, help='config file')
    parser.add_argument('--checkpoint', required=True, help='checkpoint model')
    parser.add_argument('--output_dir', required=True, help='output directory')
    parser.add_argument('--chunk_size', required=True,
                        type=int, help='decoding chunk size')
    parser.add_argument('--num_decoding_left_chunks', required=True,
                        type=int, help='cache chunks')
    parser.add_argument('--reverse_weight', default=0.5,
                        type=float, help='reverse_weight in attention_rescoing')
    parser.add_argument('--dict', type=str, required=True, help='dict file')
    parser.add_argument('--max_samples', type=int, required=True,
                        help='maximum samples')
    parser.add_argument('--cali_datalist', type=str, default=None,
                        help='make calibration data')
    parser.add_argument('--wer_datalist', type=str, default=None,
                        help='check wer')
    parser.add_argument('--wer_text', type=str, default=None,
                        help='check wer')
    parser.add_argument('--bpe_model', default=None, type=str,
                        help='bpe model for english part')
    parser.add_argument('--ln_run_on_bpu', action='store_true',
                        help='layernorm running on bpu')
    parser.add_argument('--extra_ops_run_on_cpu', type=str, default=None,
                        help='extra operations running on cpu.')
    parser.add_argument('--calibration_type', type=str, default='default',
                        help='kl / max / default.')
    return parser


if __name__ == '__main__':
    random.seed(777)
    parser = get_args()
    args = parser.parse_args()
    # NOTE(xcsong): X3 BPU only support static shapes
    assert args.chunk_size > 0
    assert args.num_decoding_left_chunks > 0
    os.system("mkdir -p " + args.output_dir)
    os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

    with open(args.config, 'r') as fin:
        conf = yaml.load(fin, Loader=yaml.FullLoader)

    model = init_model(conf)
    load_checkpoint(model, args.checkpoint)
    model.eval()

    symbol_table = read_symbol_table(args.dict)
    args.symbol_table = symbol_table
    args.feature_size = conf['input_dim']
    args.output_size = model.encoder.output_size()
    args.decoding_window = (args.chunk_size - 1) * \
        model.encoder.embed.subsampling_rate + \
        model.encoder.embed.right_context + 1

    logger.info("Stage-1: Export onnx")
    enc, enc_session = export_encoder(model, args)
    ctc, ctc_session = export_ctc(model, args)

    conf = copy.deepcopy(conf['dataset_conf'])
    conf['filter_conf']['max_length'] = 102400
    conf['filter_conf']['min_length'] = 0
    conf['filter_conf']['token_max_length'] = 102400
    conf['filter_conf']['token_min_length'] = 0
    conf['filter_conf']['max_output_input_ratio'] = 102400
    conf['filter_conf']['min_output_input_ratio'] = 0
    conf['speed_perturb'] = False
    conf['spec_aug'] = False
    conf['spec_sub'] = False
    conf['spec_trim'] = False
    conf['shuffle'] = False
    conf['sort'] = False
    if 'fbank_conf' in conf:
        conf['fbank_conf']['dither'] = 0.0
    elif 'mfcc_conf' in conf:
        conf['mfcc_conf']['dither'] = 0.0
    conf['batch_conf']['batch_type'] = "static"
    conf['batch_conf']['batch_size'] = 1

    if args.cali_datalist is not None:
        logger.info("Stage-2: Generate config")
        # FIXME(xcsong): Remove hard code
        logger.info("torch version: {}".format(torch.__version__))
        if int(torch.__version__[:4].split('.')[1]) >= 13:
            args.extra_ops_run_on_cpu = "/Split;" + \
                "/encoders.0/self_attn/Split;/encoders.1/self_attn/Split;" + \
                "/encoders.2/self_attn/Split;/encoders.3/self_attn/Split;" + \
                "/encoders.4/self_attn/Split;/encoders.5/self_attn/Split;" + \
                "/encoders.6/self_attn/Split;/encoders.7/self_attn/Split;" + \
                "/encoders.8/self_attn/Split;/encoders.9/self_attn/Split;" + \
                "/encoders.10/self_attn/Split;/encoders.11/self_attn/Split;" + \
                "/encoders.0/self_attn/Mul;/encoders.1/self_attn/Mul;" + \
                "/encoders.2/self_attn/Mul;/encoders.3/self_attn/Mul;" + \
                "/encoders.4/self_attn/Mul;/encoders.5/self_attn/Mul;" + \
                "/encoders.6/self_attn/Mul;/encoders.7/self_attn/Mul;" + \
                "/encoders.8/self_attn/Mul;/encoders.9/self_attn/Mul;" + \
                "/encoders.10/self_attn/Mul;/encoders.11/self_attn/Mul;"
        else:
            args.extra_ops_run_on_cpu = "Split_17;Split_67;Split_209;" + \
                "Split_351;Split_493;Split_635;Split_777;Split_919;Split_1061;" + \
                "Split_1203;Split_1345;Split_1487;Split_1629;" + \
                "Mul_72;Mul_214;Mul_356;Mul_498;Mul_640;Mul_782;" + \
                "Mul_924;Mul_1066;Mul_1208;Mul_1350;Mul_1492;Mul_1634;"
        generate_config(enc_session, ctc_session, args)

        logger.info("Stage-3: Make calibration data")
        make_calibration_data(enc, args, conf)

        output_dir = os.path.realpath(args.output_dir)
        logger.info("Stage-4: Make ctc.bin")
        os.system(
            "cd {} && mkdir -p hb_makertbin_log_ctc".format(output_dir) +
            " && cd hb_makertbin_log_ctc &&" +
            " hb_mapper makertbin --model-type \"onnx\" --config \"{}\"".format(
                output_dir + "/config_ctc.yaml")
        )
        logger.info("Stage-5: Make encoder.bin")
        os.system(
            "cd {} && mkdir -p hb_makertbin_log_encoder ".format(output_dir) +
            " && cd hb_makertbin_log_encoder &&" +
            " hb_mapper makertbin --model-type \"onnx\" --config \"{}\"".format(
                output_dir + "/config_encoder.yaml")
        )

    if args.wer_datalist is not None:
        logger.info("Stage-6: Check wer between torch model and quantized onnx")
        assert args.wer_text is not None
        check_wer(enc, ctc, args, conf)
        os.system(
            "python3 tools/compute-wer.py --char=1 --v=1 {} {} > {}".format(
                args.wer_text, args.output_dir + "/torch_text",
                args.output_dir + "/torch_wer")
        )
        os.system(
            "python3 tools/compute-wer.py --char=1 --v=1 {} {} > {}".format(
                args.wer_text, args.output_dir + "/onnx_text",
                args.output_dir + "/onnx_wer")
        )
        os.system("tail {} {}".format(
            args.output_dir + "/torch_wer", args.output_dir + "/onnx_wer"))