latency_metrics.py 12.6 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright (c) 2022 Horizon Inc. (author: Xingchen Song)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import logging
import librosa
import torch
import torchaudio
import yaml

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
import torchaudio.compliance.kaldi as kaldi

from wenet.utils.init_model import init_model
from wenet.utils.checkpoint import load_checkpoint
from wenet.utils.file_utils import read_symbol_table
from wenet.utils.mask import make_pad_mask
from wenet.utils.common import replace_duplicates_with_blank


def get_args():
    parser = argparse.ArgumentParser(
        description='Analyze latency and plot CTC-Spike.')
    parser.add_argument('--config', required=True,
                        type=str, help='configration')
    parser.add_argument('--gpu',
                        type=int,
                        default=0,
                        help='gpu id for this rank, -1 for cpu')
    parser.add_argument('--ckpt', required=True,
                        type=str, help='model checkpoint')
    parser.add_argument('--tag', required=True,
                        type=str, help='image subtitle')
    parser.add_argument('--wavscp', required=True,
                        type=str, help='wav.scp')
    parser.add_argument('--alignment', required=True,
                        type=str, help='force alignment, generated by Kaldi.')
    parser.add_argument('--chunk_size', required=True,
                        type=int, help='chunk size')
    parser.add_argument('--left_chunks', default=-1,
                        type=int, help='left chunks')
    parser.add_argument('--font', required=True,
                        type=str, help='font file')
    parser.add_argument('--dict', required=True,
                        type=str, help='dict file')
    parser.add_argument('--result_dir', required=True,
                        type=str, help='saving pdf')
    parser.add_argument('--model_type', default='ctc',
                        choices=['ctc', 'transducer'],
                        help='show latency metrics from ctc models or rnn-t models')
    args = parser.parse_args()
    return args


def main():
    args = get_args()
    logging.basicConfig(level=logging.INFO,
                        format='%(asctime)s %(levelname)s %(message)s')
    torch.manual_seed(777)

    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)

    symbol_table = read_symbol_table(args.dict)
    char_dict = {v: k for k, v in symbol_table.items()}

    # 1. Load model
    with open(args.config, 'r') as fin:
        conf = yaml.load(fin, Loader=yaml.FullLoader)

    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    device = torch.device('cuda' if use_cuda else 'cpu')

    model = init_model(conf)
    load_checkpoint(model, args.ckpt)
    model = model.eval().to(device)

    subsampling = model.encoder.embed.subsampling_rate
    eos = model.eos_symbol()

    with open(args.wavscp, 'r') as fin:
        wavs = fin.readlines()

    # 2. Forward model (get streaming_timestamps)
    timestamps = {}
    for idx, wav in enumerate(wavs):
        if idx % 100 == 0:
            logging.info("processed {}.".format(idx))
        key, wav = wav.strip().split(' ', 1)
        waveform, sr = torchaudio.load(wav)
        resample_rate = conf['dataset_conf']['resample_conf']['resample_rate']
        waveform = torchaudio.transforms.Resample(
            orig_freq=sr, new_freq=resample_rate)(waveform)
        waveform = waveform * (1 << 15)
        # Only keep key, feat, label
        mat = kaldi.fbank(
            waveform,
            num_mel_bins=conf['dataset_conf']['fbank_conf']['num_mel_bins'],
            frame_length=conf['dataset_conf']['fbank_conf']['frame_length'],
            frame_shift=conf['dataset_conf']['fbank_conf']['frame_shift'],
            dither=0.0, energy_floor=0.0,
            sample_frequency=resample_rate,
        )

        speech = mat.unsqueeze(0).to(device)
        speech_lengths = torch.tensor([mat.size(0)]).to(device)

        # Let's assume batch_size = 1
        encoder_out, encoder_mask = model.encoder(
            speech, speech_lengths, args.chunk_size, args.left_chunks)

        maxlen = encoder_out.size(1)  # (B, maxlen, encoder_dim)
        encoder_out_lens = encoder_mask.squeeze(1).sum(1)

        # CTC greedy search
        if args.model_type == 'ctc':
            ctc_probs = model.ctc.log_softmax(
                encoder_out)  # (B, maxlen, vocab_size)
            topk_prob, topk_index = ctc_probs.topk(1, dim=2)  # (B, maxlen, 1)
            topk_index = topk_index.view(1, maxlen)  # (B, maxlen)
            topk_prob = topk_prob.view(1, maxlen)  # (B, maxlen)
            mask = make_pad_mask(encoder_out_lens, maxlen)  # (B, maxlen)
            topk_index = topk_index.masked_fill_(mask, eos)  # (B, maxlen)
            topk_prob = topk_prob.masked_fill_(mask, 0.0)  # (B, maxlen)
            hyps = [hyp.tolist() for hyp in topk_index]
            hyps = [replace_duplicates_with_blank(hyp) for hyp in hyps]
            scores = [prob.tolist() for prob in topk_prob]
            timestamps[key] = [hyps[0], scores[0], wav]

        if args.model_type == 'transducer':
            hyps = []
            scores = []
            # fake padding
            padding = torch.zeros(1, 1).to(encoder_out.device)
            # sos
            pred_input_step = torch.tensor([model.blank]).reshape(1, 1)
            cache = model.predictor.init_state(1, method="zero",
                                               device=encoder_out.device)
            new_cache: List[torch.Tensor] = []
            t = 0
            hyps = []
            prev_out_nblk = True
            pred_out_step = None
            per_frame_max_noblk = 1
            per_frame_noblk = 0
            while t < encoder_out_lens:
                encoder_out_step = encoder_out[:, t:t + 1, :]  # [1, 1, E]
                if prev_out_nblk:
                    step_outs = model.predictor.forward_step(pred_input_step,
                                                             padding, cache)
                    pred_out_step, new_cache = step_outs[0], step_outs[1]

                joint_out_step = model.joint(encoder_out_step, pred_out_step)  # [1,1,v]
                joint_out_probs = joint_out_step.log_softmax(dim=-1)
                scores.append(torch.max(joint_out_probs).item())

                joint_out_max = joint_out_probs.argmax(dim=-1).squeeze()  # []
                if joint_out_max != model.blank:
                    hyps.append(joint_out_max.item())
                    prev_out_nblk = True
                    per_frame_noblk = per_frame_noblk + 1
                    pred_input_step = joint_out_max.reshape(1, 1)
                    # state_m, state_c =  clstate_out_m, state_out_c
                    cache = new_cache

                if joint_out_max == model.blank or \
                   per_frame_noblk >= per_frame_max_noblk:
                    if joint_out_max == model.blank:
                        prev_out_nblk = False
                        hyps.append(model.blank)
                    # TODO(Mddct): make t in chunk for streamming
                    # or t should't be too lang to predict none blank
                    t = t + 1
                    per_frame_noblk = 0
            timestamps[key] = [hyps, scores, wav]

    # 3. Analyze latency
    with open(args.alignment, 'r') as fin:
        aligns = fin.readlines()
    not_found, len_unequal, ignored = 0, 0, 0
    datas = []
    for align in aligns:
        key, align = align.strip().split(' ', 1)
        if key not in timestamps:
            not_found += 1
            continue
        fa, st = [], []  # force_alignment, streaming_timestamps
        text_fa, text_st = "", ""
        for i, token in enumerate(align.split()):
            if token != '<blank>':
                text_fa += token
                # NOTE(xcsong): W/O subsample
                fa.append(i * 10)
        # ignore alignment_errors >= 70ms
        frames_fa = len(align.split())
        frames_st = len(timestamps[key][0]) * subsampling
        if abs(frames_st - frames_fa) >= 7:
            ignored += 1
            continue
        for i, token_id in enumerate(timestamps[key][0]):
            if token_id != 0:
                text_st += char_dict[token_id]
                # NOTE(xcsong): W subsample
                st.append(i * subsampling * 10)
        if len(fa) != len(st):
            len_unequal += 1
            continue
        # datas[i] = [key, text_fa, text_st, list_of_diff,
        #             FirstTokenDelay, LastTokenDelay, AvgTokenDelay,
        #             streaming_timestamps, force_alignment]
        datas.append([key, text_fa, text_st,
                     [a - b for a, b in zip(st, fa)],
                     st[0] - fa[0], st[-1] - fa[-1],
                     (sum(st) - sum(fa)) / len(st),
                     timestamps[key], align.split()])

    logging.info("not found: {}, length unequal: {}, ignored: {}, \
        valid samples: {}".format(not_found, len_unequal, ignored, len(datas)))

    # 4. Plot and print
    num_datas = len(datas)
    names = ['FirstTokenDelay', 'LastTokenDelay', 'AvgTokenDelay']
    names_index = [4, 5, 6]
    parts = ['max', 'P90', 'P75', 'P50', 'P25', 'min']
    parts_index = [num_datas - 1, int(num_datas * 0.90), int(num_datas * 0.75),
                   int(num_datas * 0.50), int(num_datas * 0.25), 0]
    for name, name_idx in zip(names, names_index):
        def f(name_idx=name_idx):
            return name_idx
        datas.sort(key=lambda x: x[f()])
        logging.info("==========================")
        for p, i in zip(parts, parts_index):
            data = datas[i]
            # i.e., LastTokenDelay P90: 270.000 ms (wav_id: BAC009S0902W0144)
            logging.info("{} {}: {:.3f} ms (wav_id: {})".format(
                name, p, data[f()], datas[i][0]))

            font = fm.FontProperties(fname=args.font)
            plt.rcParams['axes.unicode_minus'] = False
            # we will have 2 sub-plots (force-align + streaming timestamps)
            # plus one wav-plot
            fig, axes = plt.subplots(figsize=(60, 60), nrows=3, ncols=1)
            for j in range(2):
                if j == 0:
                    # subplot-0: streaming_timestamps
                    plt_prefix = args.tag + "_" + name + "_" + p
                    x = np.arange(len(data[7][0])) * subsampling
                    hyps, scores = data[7][0], data[7][1]
                else:
                    # subplot-1: force_alignments
                    plt_prefix = "force_alignment"
                    x = np.arange(len(data[8]))
                    hyps = [symbol_table[d] for d in data[8]]
                    scores = [0.0] * len(data[8])
                axes[j].set_title(plt_prefix, fontsize=30)
                for frame, token, prob in zip(x, hyps, scores):
                    if char_dict[token] != '<blank>':
                        axes[j].bar(
                            frame, np.exp(prob),
                            label='{} {:.3f}'.format(
                                char_dict[token], np.exp(prob)),
                        )
                        axes[j].text(
                            frame, np.exp(prob),
                            '{} {:.3f} {}'.format(
                                char_dict[token], np.exp(prob), frame),
                            fontdict=dict(fontsize=24),
                            fontproperties=font,
                        )
                    else:
                        axes[j].bar(
                            frame, 0.01,
                            label='{} {:.3f}'.format(
                                char_dict[token], np.exp(prob)),
                        )
                axes[j].tick_params(labelsize=25)

            # subplot-2: wav
            # wav, hardcode sample_rate to 16000
            samples, sr = librosa.load(data[7][2], sr=16000)
            time = np.arange(0, len(samples)) * (1.0 / sr)
            axes[-1].plot(time, samples)

            # i.e., RESULT_DIR/LTD_P90_120ms_BAC009S0768W0342.pdf
            plt.savefig(args.result_dir + "/" + name + "_" +
                        p + "_" + str(data[f()]) + "ms" + "_" + data[0] + ".pdf")


if __name__ == '__main__':
    main()