test_tokenize.py 6.13 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pytest

import wenet.dataset.processor as processor

@pytest.mark.parametrize(
    "symbol_table_path",
    [
        "test/resources/librispeech.words.txt",
        "test/resources/aishell2.words.txt"
    ]
)
def test_tokenize(symbol_table_path):
    txts = [
        {"txt": "震东好帅"},
        {"txt": " 吴迪也好帅 "},
        {"txt": "binbin is also handsome"},
        {"txt": " life is short i use wenet "},
        {"txt": "超哥 is the most handsome 吧"},
        {"txt": " 人生苦短i use wenet "},
        {"txt": "人生苦短I USE WENET"},
        {"txt": "zhendong ist so schön"},
        {"txt": " zhendong ist so schön "},
        {"txt": "It's okay"}
    ]
    if symbol_table_path == "test/resources/librispeech.words.txt":
        bpe_model = "test/resources/librispeech.train_960_unigram5000.bpemodel"
        refs = [
            {"tokens": ['震', '东', '好', '帅'],
             "label": [1, 1, 1, 1]},
            {"tokens": ['吴', '迪', '也', '好', '帅'],
             "label": [1, 1, 1, 1, 1]},
            {"tokens": ['▁B', 'IN', 'B', 'IN', '▁IS', '▁ALSO', "▁HANDSOME"],
             "label": [347, 2216, 346, 2216, 2332, 143, 1990]},
            {"tokens": ['▁LIFE', '▁IS', '▁SHORT', '▁I', '▁USE', '▁WE',
                        'NE', 'T'],
             "label": [2568, 2332, 3968, 2152, 4699, 4833, 2926, 4366]},
            {"tokens": ['超', '哥', '▁IS', '▁THE', '▁MOST', '▁HANDSOME', '吧'],
             "label": [1, 1, 2332, 4435, 2860, 1990, 1]},
            {"tokens": ['人', '生', '苦', '短', '▁I', '▁USE', '▁WE', 'NE', 'T'],
             "label": [1, 1, 1, 1, 2152, 4699, 4833, 2926, 4366]},
            {"tokens": ['人', '生', '苦', '短', '▁I', '▁USE', '▁WE', 'NE', 'T'],
             "label": [1, 1, 1, 1, 2152, 4699, 4833, 2926, 4366]},
            {"tokens": ['▁', 'Z', 'HEN', 'DO', 'NG', '▁IS', 'T', '▁SO', '▁SCH',
                        'Ö', 'N'],
             "label": [3, 4999, 2048, 1248, 2960, 2332, 4366, 4072, 3844,
                       1, 2901]},
            {"tokens": ['▁', 'Z', 'HEN', 'DO', 'NG', '▁IS', 'T', '▁SO', '▁SCH',
                        'Ö', 'N'],
             "label": [3, 4999, 2048, 1248, 2960, 2332, 4366, 4072, 3844,
                       1, 2901]},
            {"tokens": ['▁IT', "'", 'S', '▁O', 'KA', 'Y'],
             "label": [2344, 2, 3790, 3010, 2418, 4979]}
        ]
    else:
        bpe_model = None
        refs = [
            {"tokens": ['震', '东', '好', '帅'],
             "label": [4932, 80, 1059, 1375]},
            {"tokens": ['吴', '迪', '也', '好', '帅'],
             "label": [656, 4540, 117, 1059, 1375]},
            {"tokens": ['b', 'i', 'n', 'b', 'i', 'n', '▁', 'i', 's', '▁',
                        'a', 'l', 's', 'o', '▁', 'h', 'a', 'n', 'd', 's',
                        'o', 'm', 'e'],
             "label": [9, 23, 33, 9, 23, 33, 1, 23, 43, 1, 7, 29, 43, 35,
                       1, 21, 7, 33, 13, 43, 35, 31, 15]},
            {"tokens": ['l', 'i', 'f', 'e', '▁', 'i', 's', '▁', 's', 'h',
                        'o', 'r', 't', '▁', 'i', '▁', 'u', 's', 'e', '▁',
                        'w', 'e', 'n', 'e', 't'],
             "label": [29, 23, 17, 15, 1, 23, 43, 1, 43, 21, 35, 41, 46,
                       1, 23, 1, 48, 43, 15, 1, 52, 15, 33, 15, 46]},
            {"tokens": ['超', '哥', '▁', 'i', 's', '▁', 't', 'h', 'e', '▁',
                        'm', 'o', 's', 't', '▁', 'h', 'a', 'n', 'd', 's', 'o',
                        'm', 'e', '▁', '吧'],
             "label": [4395, 736, 1, 23, 43, 1, 46, 21, 15, 1, 31, 35, 43, 46,
                       1, 21, 7, 33, 13, 43, 35, 31, 15, 1, 647]},
            {"tokens": ['人', '生', '苦', '短', 'i', '▁', 'u', 's', 'e', '▁',
                        'w', 'e', 'n', 'e', 't'],
             "label": [155, 2980, 3833, 3178, 23, 1, 48, 43, 15, 1, 52, 15, 33,
                       15, 46]},
            {"tokens": ['人', '生', '苦', '短', 'I', '▁', 'U', 'S', 'E', '▁',
                        'W', 'E', 'N', 'E', 'T'],
             "label": [155, 2980, 3833, 3178, 24, 1, 49, 44, 16, 1, 53, 16, 34,
                       16, 47]},
            {"tokens": ['z', 'h', 'e', 'n', 'd', 'o', 'n', 'g', '▁', 'i', 's',
                        't', '▁', 's', 'o', '▁', 's', 'c', 'h', 'ö', 'n'],
             "label": [58, 21, 15, 33, 13, 35, 33, 19, 1, 23, 43, 46, 1, 43,
                       35, 1, 43, 11, 21, 1, 33]},
            {"tokens": ['z', 'h', 'e', 'n', 'd', 'o', 'n', 'g', '▁', 'i', 's',
                        't', '▁', 's', 'o', '▁', 's', 'c', 'h', 'ö', 'n'],
             "label": [58, 21, 15, 33, 13, 35, 33, 19, 1, 23, 43, 46, 1, 43,
                       35, 1, 43, 11, 21, 1, 33]},
            {"tokens": ['I', 't', "'", 's', '▁', 'o', 'k', 'a', 'y'],
             "label": [24, 46, 2, 43, 1, 35, 27, 7, 56]}
        ]
    symbol_table = {}
    with open(symbol_table_path, 'r') as f:
        lines = f.readlines()
        for l in lines:
            l = l.strip().split()
            symbol_table[l[0]] = int(l[1])
    outs = processor.tokenize(
        txts, symbol_table, bpe_model, split_with_space=False
    )
    for (hyp, ref) in zip(outs, refs):
        assert(len(hyp["tokens"]) == len(ref["tokens"]))
        assert(all([h == r for h, r in zip(hyp["tokens"], ref["tokens"])]))
        assert(len(hyp["label"]) == len(ref["label"]))
        assert(all([h == r for h, r in zip(hyp["label"], ref["label"])]))

@pytest.mark.parametrize("use_pbe_model", [True, False])
def test_non_lang_symbol_tokenize(use_pbe_model):
    data = [{"txt": "我是{NOISE}"}]
    symbol_table = {"我": 1, "是": 2, "{NOISE}": 3}

    if use_pbe_model:
        bpe_model = "test/resources/librispeech.train_960_unigram5000.bpemodel"

        sample = next(processor.tokenize(data, symbol_table, bpe_model,
                                         non_lang_syms=["{NOISE}"]))

        assert sample["tokens"] == ["我", "是", "{NOISE}"]
    else:
        sample = next(processor.tokenize(data, symbol_table,
                                         non_lang_syms=["{NOISE}"]))

        assert sample["tokens"] == ["我", "是", "{NOISE}"]