run.sh 6.48 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/bin/bash

# Copyright 2021  Mobvoi Inc(Author: Di Wu, Binbin Zhang)
#                 NPU, ASLP Group (Author: Qijie Shao)

. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
stage=0
stop_stage=5

# The num of nodes
num_nodes=1
# The rank of current node
node_rank=0

# Use your own data path. You need to download the WenetSpeech dataset by yourself.
wenetspeech_data_dir=/ssd/nfs07/binbinzhang/wenetspeech
# Make sure you have 1.2T for ${shards_dir}
shards_dir=/ssd/nfs06/unified_data/wenetspeech_shards

# WenetSpeech training set
set=L
train_set=train_`echo $set | tr 'A-Z' 'a-z'`
dev_set=dev
test_sets="test_net test_meeting"

train_config=conf/train_conformer.yaml
checkpoint=
cmvn=true
cmvn_sampling_divisor=20 # 20 means 5% of the training data to estimate cmvn
dir=exp/conformer

decode_checkpoint=
average_checkpoint=true
average_num=10
decode_modes="attention_rescoring ctc_greedy_search"

. tools/parse_options.sh || exit 1;

set -u
set -o pipefail

# Data download
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
    echo "Please follow https://github.com/wenet-e2e/WenetSpeech to download the data."
    exit 0;
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  echo "Data preparation"
  local/wenetspeech_data_prep.sh \
    --train-subset $set \
    $wenetspeech_data_dir \
    data || exit 1;
fi

dict=data/dict/lang_char.txt
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
    echo "Make a dictionary"
    echo "dictionary: ${dict}"
    mkdir -p $(dirname $dict)
    echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
    echo "<unk> 1" >> ${dict} # <unk> must be 1
    echo "▁ 2" >> ${dict} # ▁ is for space
    tools/text2token.py -s 1 -n 1 --space "▁" data/${train_set}/text \
        | cut -f 2- -d" " | tr " " "\n" \
        | sort | uniq | grep -a -v -e '^\s*$' \
        | grep -v "▁" \
        | awk '{print $0 " " NR+2}' >> ${dict} \
        || exit 1;
    num_token=$(cat $dict | wc -l)
    echo "<sos/eos> $num_token" >> $dict
fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  echo "Compute cmvn"
  # Here we use all the training data, you can sample some some data to save time
  # BUG!!! We should use the segmented data for CMVN
  if $cmvn; then
    full_size=`cat data/${train_set}/wav.scp | wc -l`
    sampling_size=$((full_size / cmvn_sampling_divisor))
    shuf -n $sampling_size data/$train_set/wav.scp \
      > data/$train_set/wav.scp.sampled
    python3 tools/compute_cmvn_stats.py \
    --num_workers 16 \
    --train_config $train_config \
    --in_scp data/$train_set/wav.scp.sampled \
    --out_cmvn data/$train_set/global_cmvn \
    || exit 1;
  fi
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  echo "Making shards, please wait..."
  RED='\033[0;31m'
  NOCOLOR='\033[0m'
  echo -e "It requires ${RED}1.2T ${NOCOLOR}space for $shards_dir, please make sure you have enough space"
  echo -e "It takes about ${RED}12 ${NOCOLOR}hours with 32 threads"
  for x in $dev_set $test_sets ${train_set}; do
    dst=$shards_dir/$x
    mkdir -p $dst
    tools/make_shard_list.py --resample 16000 --num_utts_per_shard 1000 \
      --num_threads 32 --segments data/$x/segments \
      data/$x/wav.scp data/$x/text \
      $(realpath $dst) data/$x/data.list
  done
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  echo "Start training"
  mkdir -p $dir
  # INIT_FILE is for DDP synchronization
  INIT_FILE=$dir/ddp_init
  init_method=file://$(readlink -f $INIT_FILE)
  echo "$0: init method is $init_method"
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  # Use "nccl" if it works, otherwise use "gloo"
  dist_backend="nccl"
  world_size=`expr $num_gpus \* $num_nodes`
  echo "total gpus is: $world_size"
  cmvn_opts=
  $cmvn && cp data/${train_set}/global_cmvn $dir
  $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn"
  # train.py will write $train_config to $dir/train.yaml with model input
  # and output dimension, train.yaml will be used for inference or model
  # export later
  for ((i = 0; i < $num_gpus; ++i)); do
  {
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    # Rank of each gpu/process used for knowing whether it is
    # the master of a worker.
    rank=`expr $node_rank \* $num_gpus + $i`
    python wenet/bin/train.py --gpu $gpu_id \
      --config $train_config \
      --data_type "shard" \
      --symbol_table $dict \
      --train_data data/$train_set/data.list \
      --cv_data data/$dev_set/data.list \
      ${checkpoint:+--checkpoint $checkpoint} \
      --model_dir $dir \
      --ddp.init_method $init_method \
      --ddp.world_size $world_size \
      --ddp.rank $rank \
      --ddp.dist_backend $dist_backend \
      $cmvn_opts \
      --num_workers 8 \
      --pin_memory
  } &
  done
  wait
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  echo "Test model"
  if [ ${average_checkpoint} == true ]; then
    decode_checkpoint=$dir/avg${average_num}.pt
    echo "do model average and final checkpoint is $decode_checkpoint"
    python wenet/bin/average_model.py \
        --dst_model $decode_checkpoint \
        --src_path $dir  \
        --num ${average_num} \
        --val_best
  fi
  # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
  # -1 for full chunk
  decoding_chunk_size=
  ctc_weight=0.5
  reverse_weight=0.0
  for testset in ${test_sets} ${dev_set}; do
  {
    for mode in ${decode_modes}; do
    {
      base=$(basename $decode_checkpoint)
      result_dir=$dir/${testset}_${mode}_${base}
      mkdir -p $result_dir
      python wenet/bin/recognize.py --gpu 0 \
        --mode $mode \
        --config $dir/train.yaml \
        --data_type "shard" \
        --test_data data/$testset/data.list \
        --checkpoint $decode_checkpoint \
        --beam_size 10 \
        --batch_size 1 \
        --penalty 0.0 \
        --dict $dict \
        --ctc_weight $ctc_weight \
        --reverse_weight $reverse_weight \
        --result_file $result_dir/text \
        ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
      python tools/compute-wer.py --char=1 --v=1 \
        data/$testset/text $result_dir/text > $result_dir/wer
    }
    done
    wait
  }
  done
fi

if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  echo "Export the best model you want"
  python wenet/bin/export_jit.py \
    --config $dir/train.yaml \
    --checkpoint $dir/avg_${average_num}.pt \
    --output_file $dir/final.zip
fi