run.sh 8.43 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/bin/bash
# Copyright 2021 Tencent Inc. (Author: Kai Tang).
# Apach 2.0

. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3"
stage=0 # start from 0 if you need to start from data preparation
stop_stage=5
# data
data=data
data_url=www.openslr.org/resources/33
nj=4

#langid: 101 Cantonese , 302 Kazakh , 401 mongolian
langs="101"
recog="101"

token_type=char
# bpemode (unigram or bpe)
nbpe=4500
bpemode=unigram

# data_type can be `raw` or `shard`. Typically, raw is used for small dataset,
# `shard` is used for large dataset which is over 1k hours, and `shard` is
# faster on reading data and training.
data_type=raw
num_utts_per_shard=1000

if [ "${token_type}" = bpe ]; then
    dict=data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
    bpemodel=data/lang_char/${train_set}_${bpemode}${nbpe}
elif [ "${token_type}" = char ]; then
    dict=data/lang_char/lang_char.txt
    bpe_model=
else
    echo "Error: not supported token_type"
    exit 0
fi

train_set=train_sp
train_dev=dev
recog_set=eval_$recog

# pretrained w2v-conformer encoder
enc_init=pretrain/conformer.pt
#reinit last pretrained encoder layer: https://arxiv.org/pdf/2107.04734.pdf
enc_init_mods='encoder.encoders.0,encoder.encoders.1,encoder.encoders.2,encoder.encoders.3,encoder.encoders.4,encoder.encoders.5,encoder.encoders.6,encoder.encoders.7,encoder.encoders.8,encoder.encoders.9,encoder.encoders.10,encoder.encoders.11,encoder.encoders.12,encoder.encoders.13,encoder.encoders.14,encoder.encoders.15,encoder.encoders.16,encoder.encoders.17,encoder.encoders.18,encoder.encoders.19,encoder.encoders.20,encoder.encoders.21,encoder.encoders.22,encoder.embed'

train_config=conf/train_conformer_large_10h.yaml
checkpoint=
cmvn=false
dir=exp/${langs}_finetune_10h

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=35

. utils/parse_options.sh || exit 1;

#Babel style data preparation
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  echo "stage 0: Setting up individual languages"
  ./local/setup_languages.sh --langs "${langs}" --recog "${recog}"
fi

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
    # Data preparation
    for x in ${train_set} ${train_dev} ${recog_set}; do
        # Remove the space in text
        if [ "${token_type}" = char ]; then
            cp data/${x}/text data/${x}/text.org
            paste -d " " <(cut -f 1 -d" " data/${x}/text.org) <(cut -f 2- -d" " data/${x}/text.org | tr -d " ") \
            > data/${x}/text
            rm data/${x}/text.org
        fi
    done
fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
    # Make train dict
    echo "Make a dictionary"
    mkdir -p $(dirname $dict)

    echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
    echo "<unk> 1" >> ${dict} # <unk> must be 1

    if [ "${token_type}" = bpe ]; then
        # we borrowed these code and scripts which are related bpe from ESPnet.
        cut -f 2- -d" " data/${train_set}/text | sort  > data/lang_char/input.txt
        tools/spm_train --input=data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000
        tools/spm_encode --model=${bpemodel}.model --output_format=piece < data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict}
    elif [ "${token_type}" = char ]; then
        tools/text2token.py -s 1 -n 1 data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \
        | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${dict}
    fi

    num_token=$(cat $dict | wc -l)
    echo "<sos/eos> $num_token" >> $dict # <eos>
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  echo "stage 1: format scp "
  #dumps such pipe-style-wav to real audio file
  for x in ${train_set} ${train_dev} ${recog_set}; do
    cp data/${x}/wav.scp data/${x}/wav.scp.org
    bash local/dump_wav.sh --nj 26 data/$x/wav.scp.org data/$x/segments data/$x/wav.scp
    rm  data/$x/wav.scp.org
  done
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  echo "Prepare data, prepare required format"
  # For wav feature, just copy the data. mfcc/fbank extraction is done in training
  for x in ${train_set} ${train_dev} ${recog_set}; do
    if [ $data_type == "shard" ]; then
      tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \
        --num_threads 16 data/$x/wav.scp data/$x/text \
        $(realpath data/$x/shards) data/$x/data.list
    else
      tools/make_raw_list.py  data/$x/wav.scp data/$x/text \
        data/$x/data.list
    fi
  done
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
    # Training
    mkdir -p $dir
    INIT_FILE=$dir/ddp_init
    rm -f $INIT_FILE # delete old one before starting
    init_method=file://$(readlink -f $INIT_FILE)
    echo "$0: init method is $init_method"
    num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
    # Use "nccl" if it works, otherwise use "gloo"
    dist_backend="nccl"
    cmvn_opts=
    $cmvn && cmvn_opts="--cmvn data/${train_set}/global_cmvn"
    # train.py will write $train_config to $dir/train.yaml with model input
    # and output dimension, train.yaml will be used for inference or model
    # export later
    for ((i = 0; i < $num_gpus; ++i)); do
    {
        gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
        python wenet/bin/train.py --gpu $gpu_id \
            --config $train_config \
            --data_type $data_type \
            --symbol_table $dict \
            ${bpemodel:+--bpe_model ${bpemodel}.model} \
            --train_data data/$train_set/data.list \
            --cv_data data/$train_dev/data.list \
            ${checkpoint:+--checkpoint $checkpoint} \
            ${enc_init:+--enc_init $enc_init} \
            --enc_init_mods $enc_init_mods \
            --model_dir $dir \
            --ddp.init_method $init_method \
            --ddp.world_size $num_gpus \
            --ddp.rank $i \
            --ddp.dist_backend $dist_backend \
            --num_workers 6 \
            $cmvn_opts
    } &
    done
    wait
fi


if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
    # Test model, please specify the model you want to test by --checkpoint
    cmvn_opts=
    $cmvn && cmvn_opts="--cmvn data/${train_set}/global_cmvn"
    # TODO, Add model average here
    mkdir -p $dir/test
    if [ ${average_checkpoint} == true ]; then
        decode_checkpoint=$dir/avg_${average_num}.pt
        echo "do model average and final checkpoint is $decode_checkpoint"
        python  wenet/bin/average_model.py \
            --dst_model $decode_checkpoint \
            --src_path $dir  \
            --num ${average_num} \
            --val_best
    fi
    # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
    # -1 for full chunk
    decoding_chunk_size=
    ctc_weight=0.5
    for mode in ctc_greedy_search ctc_prefix_beam_search attention attention_rescoring; do
    for rtask in ${recog_set}; do
    {
        test_dir=$dir/test_${rtask}_${mode}
        mkdir -p $test_dir
        python  wenet/bin/recognize.py --gpu 0 \
            --mode $mode \
            --config $dir/train.yaml \
            --data_type $data_type \
            --test_data data/$rtask/data.list \
            --checkpoint $decode_checkpoint \
            --beam_size 5 \
            --batch_size 1 \
            --penalty 0.0 \
            --dict $dict \
            ${bpemodel:+--bpe_model ${bpemodel}.model} \
            --ctc_weight $ctc_weight \
            --result_file $test_dir/text_ori \
            $cmvn_opts \
            ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
         if [ "${token_type}" = bpe ]; then
            tools/spm_decode --model=${bpemodel}.model --input_format=piece < $test_dir/text_ori | sed -e "s/▁/ /g" > $test_dir/text
            python tools/compute-wer.py --char=0 --v=1 \
            data/$rtask/text $test_dir/text > $test_dir/wer
         elif [ "${token_type}" = char ]; then
            python tools/compute-wer.py --char=1 --v=1 \
            data/$rtask/text $test_dir/text_ori > $test_dir/wer
         fi
    } &
    done
    done
    wait

fi

if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
    # Export the best model you want
    python wenet/bin/export_jit.py \
        --config $dir/train.yaml \
        --checkpoint $dir/avg_${average_num}.pt \
        --output_file $dir/final.zip
fi