run.sh 13 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#!/bin/bash

# Copyright 2021 JD AI Lab. All Rights Reserved. (authors: Lu Fan)
# Copyright 2021 Mobvoi Inc. All Rights Reserved. (Di Wu)
. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3"
stage=0 # start from 0 if you need to start from data preparation
stop_stage=6

# The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl
# communication. More details can be found in
# https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
# export NCCL_SOCKET_IFNAME=ens4f1
# The num of nodes or machines used for multi-machine training
# Default 1 for single machine/node
# NFS will be needed if you want run multi-machine training
num_nodes=1
# The rank of each node or machine, range from 0 to num_nodes -1
# The first node/machine sets node_rank 0, the second one sets node_rank 1
# the third one set node_rank 2, and so on. Default 0
node_rank=0

# data
dbase=/ssd/nfs06/di.wu/open_source
aidatatang_url=www.openslr.org/resources/62
aishell_url=www.openslr.org/resources/33
magicdata_url=www.openslr.org/resources/68
primewords_url=www.openslr.org/resources/47
stcmds_url=www.openslr.org/resources/38
thchs_url=www.openslr.org/resources/18

nj=16

train_set=train
dev_set=dev

has_aishell2=false  # AISHELL2 train set is not publically downloadable
                    # With this option true, the script assumes you have it in
                    # $dbase
has_tal=false       # TAL data need download from Baidu SkyDrive
                    # With this option true, the script assumes you have
                    # TAL/TAL_ASR and TAL/TAL_ASR_mix in $dbase
data_type=raw # raw or shard
num_utts_per_shard=1000
shards_dir= # specify if you prefer to store to somewhere else
# Optional train_config
# 1. conf/train_transformer.yaml: Standard transformer
# 2. conf/train_conformer.yaml: Standard conformer
# 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer
# 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer
train_config=conf/train_conformer.yaml
# English modeling unit
# Optional 1. bpe 2. char
en_modeling_unit=bpe
dict=data/dict_$en_modeling_unit/lang_char.txt
cmvn=true
dir=exp/conformer
checkpoint=

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=30
decode_modes="ctc_greedy_search ctc_prefix_beam_search"
decode_modes="$decode_modes attention attention_rescoring"

. tools/parse_options.sh || exit 1;

test_sets="aishell aidatatang magicdata thchs"
if $has_aishell2; then
  test_sets="$test_sets aishell2"
fi
if $has_tal; then
  test_sets="$test_sets tal_asr"
fi

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  echo "stage -1: Data Download"
  # download all training data
  local/aidatatang_download_and_untar.sh $dbase/aidatatang $aidatatang_url \
    aidatatang_200zh || exit 1;
  local/aishell_download_and_untar.sh $dbase/aishell $aishell_url \
    data_aishell || exit 1;
  local/magicdata_download_and_untar.sh $dbase/magicdata $magicdata_url \
    train_set || exit 1;
  local/primewords_download_and_untar.sh $dbase/primewords $primewords_url \
    || exit 1;
  local/stcmds_download_and_untar.sh $dbase/stcmds $stcmds_url || exit 1;
  local/thchs_download_and_untar.sh $dbase/thchs $thchs_url data_thchs30 || \
    exit 1;

  # download all test data
  local/thchs_download_and_untar.sh $dbase/thchs $thchs_url test-noise \
    || exit 1;
  local/magicdata_download_and_untar.sh $dbase/magicdata $magicdata_url \
    dev_set || exit 1;
  local/magicdata_download_and_untar.sh $dbase/magicdata $magicdata_url \
    test_set || exit 1;
  # tal data need download from Baidu SkyDrive
  # AISHELL-2 database is free for academic research, not in the commerce,
  # if without permission.
  # You need to request the data from AISHELL company.
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  # Data preparation
  local/aidatatang_data_prep.sh $dbase/aidatatang/aidatatang_200zh \
    data/aidatatang || exit 1;
  local/aishell_data_prep.sh $dbase/aishell/data_aishell data/aishell \
    || exit 1;
  local/thchs-30_data_prep.sh $dbase/thchs/data_thchs30 data/thchs || exit 1;
  local/magicdata_data_prep.sh $dbase/magicdata/ data/magicdata || exit 1;
  local/primewords_data_prep.sh $dbase/primewords data/primewords || exit 1;
  local/stcmds_data_prep.sh $dbase/stcmds data/stcmds || exit 1;
  if $has_tal; then
    local/tal_data_prep.sh $dbase/TAL/TAL_ASR data/tal_asr || exit 1;
    local/tal_mix_data_prep.sh $dbase/TAL/TAL_ASR_mix data/tal_mix || exit 1;
  fi
  if $has_aishell2; then
    local/aishell2_data_prep.sh $dbase/aishell2/IOS data/aishell2/train \
      || exit 1;
    local/aishell2_data_prep.sh $dbase/aishell2/IOS/dev data/aishell2/dev \
      || exit 1;
    local/aishell2_data_prep.sh $dbase/aishell2/IOS/test data/aishell2/test \
      || exit 1;
  fi
  # Merge all data sets.
  train_sets=aidatatang,aishell,magicdata,primewords,stcmds,thchs
  dev_sets=aidatatang,aishell,magicdata,thchs
  if $has_aishell2; then
    train_sets=$train_sets,aishell2
    dev_sets=$dev_sets,aishell2
  fi
  if $has_tal; then
    train_sets=$train_sets,tal_asr,tal_mix
    dev_sets=$dev_sets,tal_asr
  fi
  unrolled_train_sets=$(eval echo data/{$train_sets}/train)
  unrolled_dev_sets=$(eval echo data/{$dev_sets}/dev)
  tools/combine_data.sh data/train $unrolled_train_sets || exit 1;
  tools/combine_data.sh data/dev $unrolled_dev_sets || exit 1;
fi


if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  # For wav feature, just copy the data. Fbank extraction is done in training
  mkdir -p data_${en_modeling_unit}
  for x in ${train_set} ${dev_set}; do
      cp -r data/$x data_${en_modeling_unit}
  done

  for x in ${test_sets}; do
      cp -r data/$x/test data_${en_modeling_unit}/test_${x}
  done

  # Unified data format for char and bpe modelding
  # Here we use ▁ for blank among english words
  # Warning : it is "▁" symbol, not "_" symbol
  for x in train dev; do
    cp data_${en_modeling_unit}/${x}/text data_${en_modeling_unit}/${x}/text.org
    paste -d " " <(cut -f 1 -d" " data_${en_modeling_unit}/${x}/text.org) \
      <(cut -f 2- -d" " data_${en_modeling_unit}/${x}/text.org \
      | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' \
      | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " ") \
      > data_${en_modeling_unit}/${x}/text
    sed -i 's/\xEF\xBB\xBF//' data_${en_modeling_unit}/${x}/text

  done

  for x in ${test_sets}; do
    cp data_${en_modeling_unit}/test_${x}/text \
      data_${en_modeling_unit}/test_${x}/text.org
    paste -d " " <(cut -f 1 -d" " data_${en_modeling_unit}/test_${x}/text.org) \
      <(cut -f 2- -d" " data_${en_modeling_unit}/test_${x}/text.org \
      | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' \
      | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " ") \
      > data_${en_modeling_unit}/test_${x}/text
    sed -i 's/\xEF\xBB\xBF//' data_${en_modeling_unit}/test_${x}/text
  done
fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  echo "Compute cmvn"
  # Here we use all the training data, you can sample some data to save time
  if $cmvn; then
    tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \
      --in_scp data/${train_set}/wav.scp \
      --out_cmvn data_${en_modeling_unit}/$train_set/global_cmvn
  fi
fi

# This bpe model is trained on librispeech training data set.
bpecode=conf/train_960_unigram5000.model
trans_type_ops=
enable_bpe=
if [ $en_modeling_unit = "bpe" ]; then
  trans_type_ops="--trans_type cn_char_en_bpe"
  enable_bpe=true
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  # Make train dict
  echo "Make a dictionary"
  mkdir -p $(dirname $dict)
  echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
  echo "<unk> 1" >> ${dict} # <unk> must be 1

  tools/text2token.py -s 1 -n 1 -m ${bpecode} \
    data_${en_modeling_unit}/${train_set}/text ${trans_type_ops} \
    | cut -f 2- -d" " | tr " " "\n" | sort | uniq | grep -a -v -e '^\s*$' \
    | grep -v '·' | grep -v '“' | grep -v "”" | grep -v "\[" | grep -v "\]" \
    | grep -v "…" | awk '{print $0 " " NR+1}' >> ${dict}

  num_token=$(cat $dict | wc -l)
  echo "<sos/eos> $num_token" >> $dict # <eos>
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  echo "Prepare data, prepare required format"
  feat_test_sets=""
  for x in ${test_sets}; do
    feat_test_sets=${feat_test_sets}" "test_${x}
  done
  for x in ${dev_set} ${train_set} ${feat_test_sets}; do
    if [ $data_type == "shard" ]; then
      sdir=${shards_dir:+$shards_dir/}shards_${en_modeling_unit}
      mkdir -p $sdir
      tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \
        --num_threads 16 data_${en_modeling_unit}/$x/wav.scp \
        data_${en_modeling_unit}/$x/text $(realpath $sdir/$x) \
        data_${en_modeling_unit}/$x/data.list
    else
      tools/make_raw_list.py data_${en_modeling_unit}/$x/wav.scp \
        data_${en_modeling_unit}/$x/text data_${en_modeling_unit}/$x/data.list
    fi
  done
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  # Training
  mkdir -p $dir
  INIT_FILE=$dir/ddp_init
  # You had better rm it manually before you start run.sh on first node.
  # rm -f $INIT_FILE # delete old one before starting
  init_method=file://$(readlink -f $INIT_FILE)
  echo "$0: init method is $init_method"
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  # Use "nccl" if it works, otherwise use "gloo"
  dist_backend="nccl"
  # The total number of processes/gpus, so that the master knows
  # how many workers to wait for.
  # More details about ddp can be found in
  # https://pytorch.org/tutorials/intermediate/dist_tuto.html
  world_size=`expr $num_gpus \* $num_nodes`
  echo "total gpus is: $world_size"
  cmvn_opts=
  $cmvn && cp data_${en_modeling_unit}/$train_set/global_cmvn $dir
  $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn"
  # train.py will write $train_config to $dir/train.yaml with model input
  # and output dimension, train.yaml will be used for inference or model
  # export later
  for ((i = 0; i < $num_gpus; ++i)); do
  {
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    # Rank of each gpu/process used for knowing whether it is
    # the master of a worker.
    rank=`expr $node_rank \* $num_gpus + $i`

    python wenet/bin/train.py --gpu $gpu_id \
      --config $train_config \
      --data_type $data_type \
      --symbol_table $dict \
      --train_data data_${en_modeling_unit}/$train_set/data.list \
      --cv_data data_${en_modeling_unit}/$dev_set/data.list \
      ${checkpoint:+--checkpoint $checkpoint} \
      --model_dir $dir \
      --ddp.init_method $init_method \
      --ddp.world_size $world_size \
      --ddp.rank $rank \
      --ddp.dist_backend $dist_backend \
      --num_workers 4 \
      ${enable_bpe:+--bpe_model $bpecode} \
      $cmvn_opts \
      --pin_memory
  } &
  done
  wait
fi

if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  # Test model, please specify the model you want to test by --checkpoint
  if [ ${average_checkpoint} == true ]; then
      decode_checkpoint=$dir/avg_${average_num}.pt
      echo "do model average and final checkpoint is $decode_checkpoint"
      python wenet/bin/average_model.py \
          --dst_model $decode_checkpoint \
          --src_path $dir  \
          --num ${average_num} \
          --val_best
  fi
  # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
  # -1 for full chunk
  decoding_chunk_size=16
  ctc_weight=0.5
  idx=0
  for mode in ${decode_modes}; do
  {
    for x in ${test_sets}; do
    {
      test_name=test_${mode}${decoding_chunk_size:+_chunk$decoding_chunk_size}
      test_dir=$dir/$test_name/${x}
      mkdir -p $test_dir
      gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1])
      python wenet/bin/recognize.py --gpu $gpu_id \
        --mode $mode \
        --config $dir/train.yaml \
        --data_type $data_type \
        --test_data data_${en_modeling_unit}/test_${x}/data.list \
        --checkpoint $decode_checkpoint \
        --beam_size 10 \
        --batch_size 1 \
        --penalty 0.0 \
        --dict $dict \
        --ctc_weight $ctc_weight \
        ${enable_bpe:+--bpe_model $bpecode} \
        --result_file $test_dir/text_${en_modeling_unit} \
        ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}

      cat $test_dir/text_${en_modeling_unit} | sed -e "s/▁/ /g" \
        > $test_dir/text
      cat data_${en_modeling_unit}/test_${x}/text | sed -e "s/▁/ /g" \
        > data_${en_modeling_unit}/test_${x}/text.tmp
      python tools/compute-wer.py --char=1 --v=1 \
        data_${en_modeling_unit}/test_${x}/text.tmp $test_dir/text \
        > $test_dir/wer
      rm data_${en_modeling_unit}/test_${x}/text.tmp
    }
    done
  } &
  ((idx+=1))
  done
  wait

fi

if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
  # Export the best model you want
  python wenet/bin/export_jit.py \
    --config $dir/train.yaml \
    --checkpoint $dir/avg_${average_num}.pt \
    --output_file $dir/final.zip \
    --output_quant_file $dir/final_quant.zip
fi