run.sh 9.5 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/bin/bash

# Copyright 2019 Mobvoi Inc. All Rights Reserved.

. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
stage=-1 # start from 0 if you need to start from data preparation
stop_stage=7
# data
data_url=www.openslr.org/resources/12
# data_url=https://us.openslr.org/resources/12
data_url=https://openslr.elda.org/resources/12
# use your own data path
datadir=

# wav data dir
wave_data=data
# Optional train_config
# 1. conf/train_transformer_large.yaml: Standard transformer
train_config=conf/conformer_rnnt.yaml
checkpoint=
cmvn=true
do_delta=false

dir=exp/conformer_transducer

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
# maybe you can try to adjust it if you can not get close results as README.md
average_num=10
decode_modes="attention_rescoring ctc_greedy_search ctc_prefix_beam_search attention"

. tools/parse_options.sh || exit 1;

# bpemode (unigram or bpe)
nbpe=5000
bpemode=unigram

set -e
set -u
set -o pipefail

train_set=train_960
dev_set=dev
recog_set="test_clean test_other dev_clean dev_other"

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  echo "stage -1: Data Download"
  for part in train-clean-100 train-clean-360 train-other-500; do
    local/download_and_untar.sh ${datadir} ${data_url} ${part}
  done
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  ### Task dependent. You have to make data the following preparation part by yourself.
  ### But you can utilize Kaldi recipes in most cases
  echo "stage 0: Data preparation"
  for part in dev-clean test-clean dev-other test-other train-clean-100 train-clean-360 train-other-500; do
    # use underscore-separated names in data directories.
    local/data_prep_torchaudio.sh ${datadir}/LibriSpeech/${part} $wave_data/${part//-/_}
  done
fi

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  ### Task dependent. You have to design training and dev sets by yourself.
  ### But you can utilize Kaldi recipes in most cases
  echo "stage 1: Feature Generation"
  mkdir -p $wave_data/train_960
  # merge total training data
  for set in train_clean_100 train_clean_360 train_other_500; do
    for f in `ls $wave_data/$set`; do
      cat $wave_data/$set/$f >> $wave_data/train_960/$f
    done
  done
  mkdir -p $wave_data/dev
  # merge total dev data
  for set in dev_clean dev_other; do
    for f in `ls $wave_data/$set`; do
      cat $wave_data/$set/$f >> $wave_data/$dev_set/$f
    done
  done

  tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \
    --in_scp $wave_data/$train_set/wav.scp \
    --out_cmvn $wave_data/$train_set/global_cmvn

fi


dict=$wave_data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
bpemodel=$wave_data/lang_char/${train_set}_${bpemode}${nbpe}
echo "dictionary: ${dict}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  ### Task dependent. You have to check non-linguistic symbols used in the corpus.
  echo "stage 2: Dictionary and Json Data Preparation"
  mkdir -p data/lang_char/

  echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
  echo "<unk> 1" >> ${dict} # <unk> must be 1

  # we borrowed these code and scripts which are related bpe from ESPnet.
  cut -f 2- -d" " $wave_data/${train_set}/text > $wave_data/lang_char/input.txt
  tools/spm_train --input=$wave_data/lang_char/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000
  tools/spm_encode --model=${bpemodel}.model --output_format=piece < $wave_data/lang_char/input.txt | tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict}
  num_token=$(cat $dict | wc -l)
  echo "<sos/eos> $num_token" >> $dict # <eos>
  wc -l ${dict}
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  # Prepare wenet required data
  echo "Prepare data, prepare required format"
  for x in $dev_set ${recog_set} $train_set ; do
    tools/make_raw_list.py $wave_data/$x/wav.scp $wave_data/$x/text \
        $wave_data/$x/data.list
  done

fi


if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  # Training
  mkdir -p $dir
  INIT_FILE=$dir/ddp_init
  rm -f $INIT_FILE # delete old one before starting
  init_method=file://$(readlink -f $INIT_FILE)
  echo "$0: init method is $init_method"
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  # Use "nccl" if it works, otherwise use "gloo"
  dist_backend="gloo"
  dist_backend="nccl"
  cmvn_opts=
  $cmvn && cmvn_opts="--cmvn $wave_data/${train_set}/global_cmvn"
  # train.py will write $train_config to $dir/train.yaml with model input
  # and output dimension, train.yaml will be used for inference or model
  # export later
  for ((i = 0; i < $num_gpus; ++i)); do
  {
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    python3 wenet/bin/train.py --gpu $gpu_id \
      --config $train_config \
      --data_type raw \
      --symbol_table $dict \
      --bpe_model ${bpemodel}.model \
      --train_data $wave_data/$train_set/data.list \
      --cv_data $wave_data/$dev_set/data.list \
      ${checkpoint:+--checkpoint $checkpoint} \
      --model_dir $dir \
      --ddp.init_method $init_method \
      --ddp.world_size $num_gpus \
      --ddp.rank $i \
      --ddp.dist_backend $dist_backend \
      --num_workers 4 \
      $cmvn_opts \
      --pin_memory
  } &
  done
  wait
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  # Test model, please specify the model you want to test by --checkpoint
  cmvn_opts=
  $cmvn && cmvn_opts="--cmvn data/${train_set}/global_cmvn"
  # TODO, Add model average here
  mkdir -p $dir/test
  if [ ${average_checkpoint} == true ]; then
    decode_checkpoint=$dir/avg_${average_num}.pt
    echo "do model average and final checkpoint is $decode_checkpoint"
    python wenet/bin/average_model.py \
      --dst_model $decode_checkpoint \
      --src_path $dir  \
      --num ${average_num} \
      --val_best
  fi
  # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
  # -1 for full chunk
  decoding_chunk_size=
  ctc_weight=0.5
  # Polling GPU id begin with index 0
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  idx=0
  for test in $recog_set; do
    for mode in ${decode_modes}; do
    {
      {
        test_dir=$dir/${test}_${mode}
        mkdir -p $test_dir
        gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1])
        python wenet/bin/recognize.py --gpu $gpu_id \
          --mode $mode \
          --config $dir/train.yaml \
          --data_type raw \
          --dict $dict \
          --bpe_model ${bpemodel}.model \
          --test_data $wave_data/$test/data.list \
          --checkpoint $decode_checkpoint \
          --beam_size 10 \
          --batch_size 1 \
          --penalty 0.0 \
          --result_file $test_dir/text_bpe \
          --ctc_weight $ctc_weight \
          ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}

        cut -f2- -d " " $test_dir/text_bpe > $test_dir/text_bpe_value_tmp
        cut -f1 -d " " $test_dir/text_bpe > $test_dir/text_bpe_key_tmp
        tools/spm_decode --model=${bpemodel}.model --input_format=piece \
          < $test_dir/text_bpe_value_tmp | sed -e "s/▁/ /g" > $test_dir/text_value_tmp
        paste -d " " $test_dir/text_bpe_key_tmp $test_dir/text_value_tmp > $test_dir/text

        python tools/compute-wer.py --char=1 --v=1 \
          $wave_data/$test/text $test_dir/text > $test_dir/wer
      } &

      ((idx+=1))
      if [ $idx -eq $num_gpus ]; then
        idx=0
      fi
    }
    done
  done
  wait

fi

if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  # Export the best model you want
  python wenet/bin/export_jit.py \
    --config $dir/train.yaml \
    --checkpoint $dir/avg_${average_num}.pt \
    --output_file $dir/final.zip
fi

# Optionally, you can add LM and test it with runtime.
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
  lm=data/local/lm
  lexicon=data/local/dict/lexicon.txt
  mkdir -p $lm
  mkdir -p data/local/dict

  # 7.1 Download & format LM
  which_lm=3-gram.pruned.1e-7.arpa.gz
  if [ ! -e ${lm}/${which_lm} ]; then
    wget http://www.openslr.org/resources/11/${which_lm} -P ${lm}
  fi
  echo "unzip lm($which_lm)..."
  gunzip -k ${lm}/${which_lm} -c > ${lm}/lm.arpa
  echo "Lm saved as ${lm}/lm.arpa"

  # 7.2 Prepare dict
  unit_file=$dict
  bpemodel=$bpemodel
  # use $dir/words.txt (unit_file) and $dir/train_960_unigram5000 (bpemodel)
  # if you download pretrained librispeech conformer model
  cp $unit_file data/local/dict/units.txt
  if [ ! -e ${lm}/librispeech-lexicon.txt ]; then
    wget http://www.openslr.org/resources/11/librispeech-lexicon.txt -P ${lm}
  fi
  echo "build lexicon..."
  tools/fst/prepare_dict.py $unit_file ${lm}/librispeech-lexicon.txt \
    $lexicon $bpemodel.model
  echo "lexicon saved as '$lexicon'"

  # 7.3 Build decoding TLG
  tools/fst/compile_lexicon_token_fst.sh \
     data/local/dict data/local/tmp data/local/lang
  tools/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1;

  # 7.4 Decoding with runtime
  fst_dir=data/lang_test
  for test in ${recog_set}; do
    ./tools/decode.sh --nj 6 \
      --beam 10.0 --lattice_beam 5 --max_active 7000 --blank_skip_thresh 0.98 \
      --ctc_weight 0.5 --rescoring_weight 1.0 --acoustic_scale 1.2 \
      --fst_path $fst_dir/TLG.fst \
      --dict_path $fst_dir/words.txt \
      data/$test/wav.scp data/$test/text $dir/final.zip $fst_dir/units.txt \
      $dir/lm_with_runtime_${test}
    tail $dir/lm_with_runtime_${test}/wer
  done
fi