run.sh 8.48 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/bin/bash

# Copyright 2019 Mobvoi Inc. All Rights Reserved.
. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2"
# The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl
# communication. More details can be found in
# https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
# export NCCL_SOCKET_IFNAME=ens4f1
export NCCL_DEBUG=INFO
stage=0     # start from 0 if you need to start from data download
stop_stage=2
# The num of nodes or machines used for multi-machine training
# Default 1 for single machine/node
# NFS will be needed if you want run multi-machine training
num_nodes=1
# The rank of each node or machine, range from 0 to num_nodes -1
# The first node/machine sets node_rank 0, the second one sets node_rank 1
# the third one set node_rank 2, and so on. Default 0
node_rank=0
# data
download_path=/root/autodl-tmp
french_data=/root/autodl-tmp/cv-corpus-8.0-2022-01-19
# path to save preproecssed data
# export data=data
. ./path.sh
. ./tools/parse_options.sh || exit 1

nj=16

# data_type can be `raw` or `shard`. Typically, raw is used for small dataset,
# `shard` is used for large dataset which is over 1k hours, and `shard` is
# faster on reading data and training.
data_type=raw
num_utts_per_shard=1000

train_set=train
# Optional train_config
# 1. conf/train_transformer.yaml: Standard transformer
# 2. conf/train_conformer.yaml: Standard conformer
# 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer
# 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer
# 5. conf/train_conformer_no_pos.yaml: Conformer without relative positional encoding
# 6. conf/train_u2++_conformer.yaml: U2++ conformer
# 7. conf/train_u2++_transformer.yaml: U2++ transformer
train_config=conf/train_conformer.yaml
cmvn=true
dir=exp/conformer
checkpoint=
nbpe=5000

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=20
#decode_modes="ctc_greedy_search ctc_prefix_beam_search attention attention_rescoring"
decode_modes="attention attention_rescoring"

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then

    echo "stage -1: Data download"
    echo "download Dataset!"
    local/download_data.sh ${download_path} ${french_data}
    echo "Finish stage 0"
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then

    echo "stage 0: Data preparation"
    local/prepare_data.sh ${french_data}/fr
    echo "Finish stage 0"
fi

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
    echo "stage 1: compute global cmvn"
    # compute cmvn
    python tools/compute_cmvn_stats.py --num_workers 1 --train_config $train_config \
        --in_scp data/${train_set}/wav.scp \
        --out_cmvn data/${train_set}/global_cmvn
    echo "Finish stage 1"
fi


bpemode=unigram
dict=data/lang_char_/${train_set}_${bpemode}${nbpe}_units.txt
bpemodel=data/lang_char_/${train_set}_${bpemode}${nbpe}
echo "dictionary: ${dict}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  ### Task dependent. You have to check non-linguistic symbols used in the corpus.
  echo "stage 2: Dictionary and Json Data Preparation"
  mkdir -p data/lang_char_/
  echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
  echo "<unk> 1" >> ${dict} # <unk> must be 1

  # we borrowed these code and scripts which are related bpe from ESPnet.
  cut -f 2- -d" " data/${train_set}/text > data/lang_char_/input.txt
  tools/spm_train --input=data/lang_char_/input.txt --vocab_size=${nbpe} \
    --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000
  tools/spm_encode --model=${bpemodel}.model --output_format=piece \
    < data/lang_char_/input.txt | \
    tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict}
  num_token=$(cat $dict | wc -l)
  echo "<sos/eos> $num_token" >> $dict # <eos>
  wc -l ${dict}
fi


if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  echo "stage 3: Prepare data, prepare required format"
  for x in dev test ${train_set}; do
    if [ $data_type == "shard" ]; then
      python tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \
        --num_threads 16 data/$x/wav.scp data/$x/text \
        $(realpath data/$x/shards) data/$x/data.list
    else
      python tools/make_raw_list.py data/$x/wav.scp data/$x/text \
        data/$x/data.list
    fi
  done
  echo "Finish stage 3"
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  mkdir -p $dir
  # You have to rm `INIT_FILE` manually when you resume or restart a
  # multi-machine training.
  INIT_FILE=$dir/ddp_init
  init_method=file://$(readlink -f $INIT_FILE)
  echo "$0: init method is $init_method"
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  # Use "nccl" if it works, otherwise use "gloo"
  dist_backend="gloo"
  world_size=`expr $num_gpus \* $num_nodes`
  echo "total gpus is: $world_size"
  cmvn_opts=
  $cmvn && cp data/${train_set}/global_cmvn $dir
  $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn"

  # train.py rewrite $train_config to $dir/train.yaml with model input
  # and output dimension, and $dir/train.yaml will be used for inference
  # and export.
  for ((i = 0; i < $num_gpus; ++i)); do
  {
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    # Rank of each gpu/process used for knowing whether it is
    # the master of a worker.
    rank=`expr $node_rank \* $num_gpus + $i`
    python wenet/bin/train.py --gpu $gpu_id \
      --config $train_config \
      --data_type $data_type \
      --symbol_table $dict \
      --bpe_model $bpemodel.model \
      --train_data data/$train_set/data.list \
      --cv_data data/dev/data.list \
      ${checkpoint:+--checkpoint $checkpoint} \
      --model_dir $dir \
      --ddp.init_method $init_method \
      --ddp.world_size $world_size \
      --ddp.rank $rank \
      --ddp.dist_backend $dist_backend \
      --num_workers 1 \
      $cmvn_opts \
      --pin_memory
  } &
  done
  wait
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  # Test model, please specify the model you want to test by --checkpoint
  cmvn_opts=
  $cmvn && cmvn_opts="--cmvn data/${train_set}/global_cmvn"
  # TODO, Add model average here
  mkdir -p $dir/test
  if [ ${average_checkpoint} == true ]; then
      decode_checkpoint=$dir/avg_${average_num}.pt
      echo "do model average and final checkpoint is $decode_checkpoint"
      python wenet/bin/average_model.py \
          --dst_model $decode_checkpoint \
          --src_path $dir  \
          --num ${average_num} \
          --val_best
  fi
  # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
  # -1 for full chunk
  decoding_chunk_size=
  ctc_weight=0.5
  # Polling GPU id begin with index 0
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  idx=0
  for mode in ${decode_modes}; do
    {
      {
        test_dir=$dir/test_${mode}
        mkdir -p $test_dir
        gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1])
        python wenet/bin/recognize.py --gpu 0 \
          --mode $mode \
          --config $dir/train.yaml \
          --data_type "raw" \
          --bpe_model $bpemodel.model \
          --test_data data/test/data.list \
          --checkpoint $decode_checkpoint \
          --beam_size 20 \
          --batch_size 1 \
          --penalty 0.0 \
          --dict $dict \
          --result_file $test_dir/text_bpe \
          --ctc_weight $ctc_weight \
          ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}

        cut -f2- -d " " $test_dir/text_bpe > $test_dir/text_bpe_value_tmp
        cut -f1 -d " " $test_dir/text_bpe > $test_dir/text_bpe_key_tmp

         tools/spm_decode --model=${bpemodel}.model --input_format=piece \
           < $test_dir/text_bpe_value_tmp | sed -e "s/▁/ /g" > $test_dir/text_value
        #sed -e "s/▁/ /g" $test_dir/text_bpe_value_tmp > $test_dir/text_value
        paste -d " " $test_dir/text_bpe_key_tmp $test_dir/text_value > $test_dir/text
        # a raw version wer without refining processs
        python tools/compute-wer.py --char=1 --v=1 \
          data/test/text $test_dir/text > $test_dir/wer
      } &

      ((idx+=1))
      if [ $idx -eq $num_gpus ]; then
        idx=0
      fi
    }
    done

  wait
fi

if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  # Export the best model you want
  python wenet/bin/export_jit.py \
    --config $dir/train.yaml \
    --checkpoint $dir/avg_${average_num}.pt \
    --output_file $dir/final.zip
fi