run.sh 4.03 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env bash

# Copyright 2020 Jian Wu
# License: Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)

set -eu

stage="1-4"
space="<space>"
track="isolated_1ch_track"
wsj1_data_dir=//scratch/jwu/wsj1
chime4_data_dir=/scratch/jwu/CHiME4
dump_wav_dir=/scratch/jwu/chime4_wav

data_dir=data/chime4
dict=$data_dir/dict_char.txt
train_config=conf/train_conformer.yaml
exp_dir=exp/1a
decode_modes="ctc_prefix_beam_search attention_rescoring"
average_checkpoint=true
average_num=10

. ./path.sh
. ./tools/parse_options.sh || exit 1

beg=$(echo $stage | awk -F '-' '{print $1}')
end=$(echo $stage | awk -F '-' '{print $2}')
[ -z $end ] && end=$beg

if [ $end -ge 1 ] && [ $beg -le 1 ]; then
  echo "Stage 1: preparing data ..."
  ./local/clean_wsj0_data_prep.sh $chime4_data_dir/CHiME3/data/WSJ0
  ./local/simu_noisy_chime4_data_prep.sh $chime4_data_dir
  ./local/real_noisy_chime4_data_prep.sh $chime4_data_dir
  ./local/simu_enhan_chime4_data_prep.sh $track $chime4_data_dir/data/audio/16kHz/$track
  ./local/real_enhan_chime4_data_prep.sh $track $chime4_data_dir/data/audio/16kHz/$track
  ./local/clean_wsj1_data_prep.sh $wsj1_data_dir
  ./local/chime4_format_dir.sh
fi


if [ $end -ge 2 ] && [ $beg -le 2 ]; then
  echo -e "<NOISE>\n<*IN*>\n<*MR.*>" > $data_dir/train/non_lang.txt
  for name in dev train; do
    python tools/text2token.py $data_dir/$name/text -n 1 -s 1 \
      -l $data_dir/train/non_lang.txt > $data_dir/$name/char
  done
  mkdir -p $(dirname $dict) && echo -e "<blank> 0\n<unk> 1" > ${dict}
  cat $data_dir/train/char | cut -f 2- -d" " | tr " " "\n" | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict}
  num_token=$(cat $dict | wc -l)
  echo "<sos/eos> $num_token" >> $dict
  echo "Make dictionary done"
fi


if [ $end -ge 3 ] && [ $beg -le 3 ]; then
  ./local/chime4_gen_wav.sh $data_dir/train $dump_wav_dir
  tools/compute_cmvn_stats.py --num_workers 16 \
   --train_config $train_config \
    --in_scp $data_dir/train/wav.scp \
    --out_cmvn $data_dir/train/global_cmvn
  echo "Prepare data, prepare required format"
  for x in train dev; do
  tools/make_raw_list.py $data_dir/$x/wav.scp $data_dir/$x/char \
    $data_dir/$x/data.list
  done
fi

if [ $end -ge 4 ] && [ $beg -le 4 ]; then
  mkdir -p $exp_dir && cp $data_dir/train/global_cmvn $exp_dir
  python wenet/bin/train.py \
    --gpu 0 \
    --config $train_config \
    --train_data $data_dir/train/data.list \
    --cv_data $data_dir/dev/data.list \
    --model_dir $exp_dir \
    --num_workers 4 \
    --symbol_table $dict \
    --cmvn $exp_dir/global_cmvn \
    --pin_memory > $exp_dir/train.log 2>&1
fi

suffix="isolated_1ch_track"
if [ $end -ge 5 ] && [ $beg -le 5 ]; then
  if [ ${average_checkpoint} == true ]; then
    decode_checkpoint=$exp_dir/avg_${average_num}.pt
    echo "do model average and final checkpoint is $decode_checkpoint"
    python wenet/bin/average_model.py \
      --dst_model $decode_checkpoint \
      --src_path $exp_dir  \
      --num ${average_num} \
      --val_best
  fi
  nj=4
  ctc_weight=0.5
  for x in dt05_{simu,real} et05_{simu,real}; do
    subdir=${x}_${suffix}
    tools/make_raw_list.py $data_dir/$subdir/wav.scp $data_dir/$subdir/text \
      $data_dir/$subdir/data.list
  done
  for mode in ${decode_modes}; do
    for x in dt05_{simu,real} et05_{simu,real}; do
      subdir=${x}_${suffix}
      dec_dir=$exp_dir/${subdir}_${mode} && mkdir -p $dec_dir
      python wenet/bin/recognize.py \
        --gpu 0 \
        --mode $mode \
        --config $exp_dir/train.yaml \
        --test_data $data_dir/$subdir/data.list \
        --checkpoint $exp_dir/avg_${average_num}.pt \
        --beam_size 8 \
        --batch_size 1 \
        --dict $dict \
        --ctc_weight $ctc_weight \
        --result_file $dec_dir/text &
     done
     wait
  done
  for mode in ${decode_modes}; do
    for x in dt05_{simu,real} et05_{simu,real}; do
     subdir=${x}_${suffix}
     dec_dir=$exp_dir/${subdir}_${mode}
     sed 's:<space>: :g' $dec_dir/text > $dec_dir/text.norm
     python tools/compute-wer.py --char=1 --v=1 \
       $data_dir/$subdir/text $dec_dir/text.norm > $dec_dir/wer
    done
  done
fi