run.sh 6.82 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/bin/bash

# Copyright 2019 Mobvoi Inc. All Rights Reserved.
. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
# The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl
# communication. More details can be found in
# https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
# export NCCL_SOCKET_IFNAME=ens4f1
export NCCL_DEBUG=INFO
stage=0 # start from 0 if you need to start from data preparation
stop_stage=6
# The num of nodes or machines used for multi-machine training
# Default 1 for single machine/node
# NFS will be needed if you want run multi-machine training
num_nodes=1
# The rank of each node or machine, range from 0 to num_nodes -1
# The first node/machine sets node_rank 0, the second one sets node_rank 1
# the third one set node_rank 2, and so on. Default 0
node_rank=0
num_utts_per_shard=1000
data_url=https://www.openslr.org/resources/111
data_source=/home/work_nfs5_ssd/yhliang/data/aishell4
# modify this to your AISHELL-4 data path

nj=16
dict=data/dict/lang_char.txt

train_set=aishell4_train
dev_set=aishell4_test
test_sets=aishell4_test

train_config=conf/train_conformer.yaml
cmvn=true
dir=exp/conformer
checkpoint=

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=30
decode_modes="attention_rescoring"

. tools/parse_options.sh || exit 1;

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
  echo "stage -1: Data Download"
  local/download_and_untar.sh ${data_source} ${data_url} train_L
  local/download_and_untar.sh ${data_source} ${data_url} train_M
  local/download_and_untar.sh ${data_source} ${data_url} train_S
  local/download_and_untar.sh ${data_source} ${data_url} test
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  # Data preparation
  local/prepare_data.sh ${data_source} || exit 1;
fi

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  # remove the space between the text labels for Mandarin dataset
  for x in ${train_set} ${test_sets}; do
    cp data/${x}/text data/${x}/text.org
    paste -d " " <(cut -d " " -f 1 data/${x}/text.org) <(cut -d " " -f 2 data/${x}/text.org \
      | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " ") > data/${x}/text
    rm data/${x}/text.org
  done

  tools/compute_cmvn_stats.py --num_workers 32 --train_config $train_config \
    --in_scp data/${train_set}/wav.scp \
    --out_cmvn data/$train_set/global_cmvn

fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  # Make train dict
  echo "Make a dictionary"
  mkdir -p $(dirname $dict)
  echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
  echo "<unk> 1" >> ${dict} # <unk> must be 1
  tools/text2token.py -s 1 -n 1 data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \
    | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${dict}
  num_token=$(cat $dict | wc -l)
  echo "<sos/eos> $num_token" >> $dict # <eos>
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  # Prepare wenet required data
  echo "Prepare data, prepare required format"
  for x in $train_set ${test_sets}; do
    tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \
      --num_threads 32 --segments data/$x/segments \
      data/$x/wav.scp data/$x/text $(realpath data/$x/shards) data/$x/data.list
  done
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  # Training
  mkdir -p $dir
  INIT_FILE=$dir/ddp_init
  # You had better rm it manually before you start run.sh on first node.
  # rm -f $INIT_FILE # delete old one before starting
  init_method=file://$(readlink -f $INIT_FILE)
  echo "$0: init method is $init_method"
  # The number of gpus runing on each node/machine
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  # Use "nccl" if it works, otherwise use "gloo"
  dist_backend="gloo"
  # The total number of processes/gpus, so that the master knows
  # how many workers to wait for.
  # More details about ddp can be found in
  # https://pytorch.org/tutorials/intermediate/dist_tuto.html
  world_size=`expr $num_gpus \* $num_nodes`
  echo "total gpus is: $world_size"
  cmvn_opts=
  $cmvn && cp data/${train_set}/global_cmvn $dir
  $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn"
  # train.py will write $train_config to $dir/train.yaml with model input
  # and output dimension, train.yaml will be used for inference or model
  # export later
  for ((i = 0; i < $num_gpus; ++i)); do
  {
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    # Rank of each gpu/process used for knowing whether it is
    # the master of a worker.
    rank=`expr $node_rank \* $num_gpus + $i`
    python wenet/bin/train.py --gpu $gpu_id \
      --config $train_config \
      --data_type shard \
      --symbol_table $dict \
      --train_data data/$train_set/data.list \
      --cv_data data/${dev_set}/data.list \
      ${checkpoint:+--checkpoint $checkpoint} \
      --model_dir $dir \
      --ddp.init_method $init_method \
      --ddp.world_size $world_size \
      --ddp.rank $rank \
      --ddp.dist_backend $dist_backend \
      --num_workers 1 \
      $cmvn_opts
  }
  done
  wait
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  # Test model, please specify the model you want to test by --checkpoint
  if [ ${average_checkpoint} == true ]; then
    decode_checkpoint=$dir/avg_${average_num}.pt
    echo "do model average and final checkpoint is $decode_checkpoint"
    python wenet/bin/average_model.py \
      --dst_model $decode_checkpoint \
      --src_path $dir  \
      --num ${average_num}
  fi
  # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
  # -1 for full chunk
  decoding_chunk_size=
  ctc_weight=0.5
  for mode in ${decode_modes}; do
  {
    for test_set in ${test_sets}; do
    {
      test_dir=$dir/test_${mode}
      mkdir -p $test_dir
      python wenet/bin/recognize.py --gpu $(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f1) \
        --mode $mode \
        --config $dir/train.yaml \
        --data_type shard \
        --test_data data/${test_set}/data.list \
        --checkpoint $decode_checkpoint \
        --beam_size 10 \
        --batch_size 1 \
        --penalty 0.0 \
        --dict $dict \
        --ctc_weight $ctc_weight \
        --result_file $test_dir/text \
        ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
      python tools/compute-wer.py --char=1 --v=1 \
        data/${test_set}/text $test_dir/text > $test_dir/wer
    } &
    done
  }
  done
  wait

fi

if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  # Export the best model you want
  python wenet/bin/export_jit.py \
    --config $dir/train.yaml \
    --checkpoint $dir/avg_${average_num}.pt \
    --output_file $dir/final.zip \
    --output_quant_file $dir/final_quant.zip
fi