peft_lora.py 13.2 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import argparse
import gc
import json
import os
import random
import threading

import yaml
from PIL import Image
import psutil
import torch
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.utils import HfDeepSpeedConfig
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    get_linear_schedule_with_warmup
)
from torch.utils.tensorboard import SummaryWriter

from peft import get_peft_model, LoraConfig, TaskType

import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class ConversationDataset(Dataset):
    def __init__(self,
                 root_dir,
                 tokenizer,
                 model,
                 torch_type,
                 device='cuda',
                 input_length=1024,
                 output_length=1024
                 ):
        self.root_dir = root_dir
        self.tokenizer = tokenizer
        self.model = model
        self.image_dir = os.path.join(root_dir, 'images')
        self.label_dir = os.path.join(root_dir,
                                      'labels_en')  # can be change to labels_en or labels_zh in SFT-311K dataset
        self.filenames = os.listdir(self.image_dir)
        self.input_length = input_length
        self.output_length = output_length
        self.device = device
        self.torch_type = torch_type
        self.padding_len = 2303
        self.max_length = self.input_length + self.output_length + self.padding_len

    def __len__(self):
        return len(self.filenames)

    @staticmethod
    def custom_collate_fn(batch):
        batched_data = {}
        for key in batch[0].keys():
            if isinstance(batch[0][key], list):
                batched_data[key] = [batch_item[key] for batch_item in batch]
            elif isinstance(batch[0][key], torch.Tensor):
                batched_data[key] = torch.stack([item[key] for item in batch])
            else:
                raise ValueError("Unsupported datatype in custom collate_fn")

        return batched_data

    def __getitem__(self, idx):
        img_name = os.path.join(self.image_dir, self.filenames[idx])
        label_name = os.path.join(self.label_dir, self.filenames[idx].replace('.jpg', '.json'))

        image = Image.open(img_name).convert('RGB')
        with open(label_name, 'r') as f:
            label_data = json.load(f)

        num_rounds = len(label_data["conversations"]) // 2
        sampled_round_id = random.randint(0, num_rounds - 1)
        history = [(label_data["conversations"][(sampled_round_id - 1) * 2]["content"],
                    label_data["conversations"][(sampled_round_id - 1) * 2 + 1]["content"])] if (
                sampled_round_id > 0 and random.random() > 0.5) else None
        query = label_data["conversations"][sampled_round_id * 2]["content"]
        response = label_data["conversations"][sampled_round_id * 2 + 1]["content"]

        input_data = self.model.build_conversation_input_ids(
            tokenizer=self.tokenizer,
            query=query,
            history=history,
            images=[image],
            answer=response
        )

        def pad_to_len(unpadded_tensor, pad_to_length, pad_value=0):
            current_length = len(unpadded_tensor)
            if current_length >= pad_to_length:
                return unpadded_tensor[:pad_to_length]
            return torch.cat(
                (unpadded_tensor,
                 torch.full([pad_to_length - current_length],
                            fill_value=pad_value,
                            dtype=unpadded_tensor.dtype,
                            device=unpadded_tensor.device)), dim=0)

        input_data['input_ids'] = pad_to_len(
            input_data['input_ids'],
            self.max_length,
            pad_value=128002,
        )

        input_data['attention_mask'] = pad_to_len(
            input_data['attention_mask'],
            self.max_length,
            pad_value=0
        )
        input_data['token_type_ids'] = pad_to_len(
            input_data['token_type_ids'],
            self.max_length,
            pad_value=0
        )

        input_data['labels'] = pad_to_len(
            input_data['labels'],
            self.max_length,
            pad_value=-100
        )

        for data_key in input_data:
            if data_key in ['images']:
                input_data[data_key] = [data.to(self.device).to(self.torch_type) for data in
                                        input_data[data_key]]
            else:
                input_data[data_key] = input_data[data_key].to(self.device)

        return input_data


def b2mb(x):
    return int(x / 2 ** 20)


class TorchTracemalloc:
    def __enter__(self):
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        self.begin = torch.cuda.memory_allocated()
        self.process = psutil.Process()

        self.cpu_begin = self.cpu_mem_used()
        self.peak_monitoring = True
        peak_monitor_thread = threading.Thread(target=self.peak_monitor_func)
        peak_monitor_thread.daemon = True
        peak_monitor_thread.start()
        return self

    def cpu_mem_used(self):
        return self.process.memory_info().rss

    def peak_monitor_func(self):
        self.cpu_peak = -1
        while True:
            self.cpu_peak = max(self.cpu_mem_used(), self.cpu_peak)
            if not self.peak_monitoring:
                break

    def __exit__(self, *exc):
        self.peak_monitoring = False

        gc.collect()
        torch.cuda.empty_cache()
        self.end = torch.cuda.memory_allocated()
        self.peak = torch.cuda.max_memory_allocated()
        self.used = b2mb(self.end - self.begin)
        self.peaked = b2mb(self.peak - self.begin)

        self.cpu_end = self.cpu_mem_used()
        self.cpu_used = b2mb(self.cpu_end - self.cpu_begin)
        self.cpu_peaked = b2mb(self.cpu_peak - self.cpu_begin)


def main():
    parser = argparse.ArgumentParser(description="Finetune a CogVLM model with LoRA")
    parser.add_argument("--lr", type=float, default=1e-7, help="Learning rate")
    parser.add_argument("--num_epochs", type=int, default=5, help="Number of epochs")
    parser.add_argument("--batch_size", type=int, default=2, help="Batch size")
    parser.add_argument("--torch_type", type=str, default="torch.bfloat16", help="Torch type")
    parser.add_argument("--save_step", type=int, default=100, help="Steps between checkpoints")
    parser.add_argument("--train_dataset_rate", type=float, default=0.8,
                        help="Proportion of dataset to use for training")
    parser.add_argument("--local_rank", type=int, default=-1, help="Local rank for distributed training")
    parser.add_argument("--lora_rank", type=int, default=8, help="Rank parameter for LoRA")
    parser.add_argument("--lora_alpha", type=int, default=32, help="Alpha parameter for LoRA")
    parser.add_argument("--lora_target", type=str, default=["vision_expert_query_key_value"],
                        help="Finetune Target for LoRA")  # you can change the target to other modules such as "language_expert_query_key_value"
    parser.add_argument("--lora_dropout", type=float, default=0.1, help="Dropout rate for LoRA")
    parser.add_argument("--warmup_steps", type=int, default=0,
                        help="Number of warmup steps for learning rate scheduler")
    parser.add_argument("--max_input_len", type=int, default=128, help="Maximum input length")
    parser.add_argument("--max_output_len", type=int, default=128, help="Maximum output length")
    parser.add_argument("--model_path", type=str,
                        default="THUDM/cogvlm2-llama3-chat-19B",
                        help="Path to the pretrained model")
    parser.add_argument("--dataset_path", type=str,
                        default="CogVLM-SFT-311K/llava_instruction_multi_conversations_formate",
                        help="Path to the conversation dataset")
    parser.add_argument("--save_path", type=str, default="output",
                        help="Path to save the finetuned model, must be a exit directory")
    parser.add_argument("--ds_config", type=str, default="ds_config.yaml",
                        help="DeepSpeed configuration file path")
    args = parser.parse_args()
    args.torch_type = eval(args.torch_type)

    with open(args.ds_config) as f:
        ds_config = yaml.safe_load(f)
    hf_ds_config = HfDeepSpeedConfig(ds_config)

    ds_plugin = DeepSpeedPlugin(hf_ds_config=hf_ds_config)
    accelerator = Accelerator(deepspeed_plugin=ds_plugin)

    tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(args.model_path, torch_dtype=args.torch_type, trust_remote_code=True)

    if len(tokenizer) != model.get_input_embeddings().weight.size(0):
        model.resize_token_embeddings(len(tokenizer))
    dataset = ConversationDataset(
        root_dir=args.dataset_path,
        tokenizer=tokenizer,
        model=model,
        torch_type=args.torch_type,
        input_length=args.max_input_len,
        output_length=args.max_output_len
    )
    train_size = int(args.train_dataset_rate * len(dataset))
    val_size = len(dataset) - train_size
    train_dataset, val_dataset = random_split(dataset, [train_size, val_size])

    train_dataloader = DataLoader(
        train_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        collate_fn=dataset.custom_collate_fn,

    )
    eval_dataloader = DataLoader(
        val_dataset,
        batch_size=args.batch_size,
        shuffle=True,
        collate_fn=dataset.custom_collate_fn,
    )
    peft_config = LoraConfig(
        task_type=TaskType.CAUSAL_LM,
        inference_mode=False,
        r=args.lora_rank,
        target_modules=args.lora_target,
        lora_alpha=args.lora_alpha,
        lora_dropout=args.lora_dropout,
    )

    model = get_peft_model(model, peft_config)
    optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
    lr_scheduler = get_linear_schedule_with_warmup(
        optimizer=optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
    )
    model, train_dataloader, eval_dataloader, optimizer, lr_scheduler = accelerator.prepare(
        model, train_dataloader, eval_dataloader, optimizer, lr_scheduler
    )
    logger.info("Preparation done. Starting training...")
    writer = SummaryWriter(log_dir=args.save_path)
    for epoch in range(args.num_epochs):
        model.train()
        total_loss = 0.0
        for step, batch in enumerate(tqdm(train_dataloader)):
            outputs = model(
                input_ids=batch['input_ids'],
                token_type_ids=batch['token_type_ids'],
                attention_mask=batch['attention_mask'],
                images=batch['images'],
                labels=batch['labels']
            )
            loss = outputs.loss
            total_loss += loss.detach().float()
            accelerator.backward(loss)
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            if (step + 1) % args.save_step == 0:
                print(f"Epoch {epoch}, Step {step + 1}, Loss {loss.item()}")
                checkpoint_path = os.path.join(args.save_path, f'checkpoint_epoch_{epoch}_step_{step + 1}')
                model.save_pretrained(
                    save_directory=checkpoint_path,
                    safe_serialization=True
                )
                writer.add_scalar('Train/Loss', loss.item(), epoch * len(train_dataloader) + step)

        total_loss = accelerator.gather(total_loss)
        avg_loss = total_loss.mean().item() / len(train_dataloader)
        train_ppl = torch.exp(torch.tensor(avg_loss))
        writer.add_scalar('Train/Epoch_Loss', avg_loss, epoch)
        writer.add_scalar('Train/Perplexity', train_ppl, epoch)
        accelerator.print(f"Epoch {epoch}: Average Loss {avg_loss:.4f}, Perplexity {train_ppl:.4f}")

        model.eval()
        eval_loss = 0.0

        for _, batch in enumerate(tqdm(eval_dataloader)):
            inputs = {
                'input_ids': batch['input_ids'],
                'token_type_ids': batch['token_type_ids'],
                'attention_mask': batch['attention_mask'],
                'images': batch['images']
            }
            labels = batch['labels'].to(accelerator.device)

            with torch.no_grad():
                outputs = accelerator.unwrap_model(model)(
                    input_ids=inputs['input_ids'],
                    token_type_ids=inputs['token_type_ids'],
                    attention_mask=inputs['attention_mask'],
                    images=inputs['images'],
                    labels=labels
                )

                loss = outputs.loss
                eval_loss += loss.detach().float()

        eval_loss = accelerator.gather(eval_loss)
        avg_eval_loss = eval_loss.mean().item()
        writer.add_scalar('Eval/Perplexity', torch.exp(torch.tensor(avg_eval_loss)), epoch)
        writer.add_scalar('Eval/Epoch_Loss', avg_eval_loss, epoch)

        checkpoint_path = os.path.join(args.save_path, 'final_model')
        model.save_pretrained(
            save_directory=checkpoint_path,
            safe_serialization=True
        )


if __name__ == "__main__":
    main()