transformer.py 56.8 KB
Newer Older
dengjb's avatar
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
import math
import warnings

import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import (BaseTransformerLayer,
                                         TransformerLayerSequence,
                                         build_transformer_layer_sequence)
from mmcv.ops import MultiScaleDeformableAttention
from mmengine.model import BaseModule
from mmengine.model.weight_init import xavier_init
from torch.nn.init import normal_

from mmdet.models.layers.transformer import inverse_sigmoid
from mmdet.registry import MODELS

try:
    from fairscale.nn.checkpoint import checkpoint_wrapper
except Exception:
    checkpoint_wrapper = None

# In order to save the cost and effort of reproduction,
# I did not refactor it into the style of mmdet 3.x DETR.


class Transformer(BaseModule):
    """Implements the DETR transformer.

    Following the official DETR implementation, this module copy-paste
    from torch.nn.Transformer with modifications:

        * positional encodings are passed in MultiheadAttention
        * extra LN at the end of encoder is removed
        * decoder returns a stack of activations from all decoding layers

    See `paper: End-to-End Object Detection with Transformers
    <https://arxiv.org/pdf/2005.12872>`_ for details.

    Args:
        encoder (`mmcv.ConfigDict` | Dict): Config of
            TransformerEncoder. Defaults to None.
        decoder ((`mmcv.ConfigDict` | Dict)): Config of
            TransformerDecoder. Defaults to None
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Defaults to None.
    """

    def __init__(self, encoder=None, decoder=None, init_cfg=None):
        super(Transformer, self).__init__(init_cfg=init_cfg)
        self.encoder = build_transformer_layer_sequence(encoder)
        self.decoder = build_transformer_layer_sequence(decoder)
        self.embed_dims = self.encoder.embed_dims

    def init_weights(self):
        # follow the official DETR to init parameters
        for m in self.modules():
            if hasattr(m, 'weight') and m.weight.dim() > 1:
                xavier_init(m, distribution='uniform')
        self._is_init = True

    def forward(self, x, mask, query_embed, pos_embed):
        """Forward function for `Transformer`.

        Args:
            x (Tensor): Input query with shape [bs, c, h, w] where
                c = embed_dims.
            mask (Tensor): The key_padding_mask used for encoder and decoder,
                with shape [bs, h, w].
            query_embed (Tensor): The query embedding for decoder, with shape
                [num_query, c].
            pos_embed (Tensor): The positional encoding for encoder and
                decoder, with the same shape as `x`.

        Returns:
            tuple[Tensor]: results of decoder containing the following tensor.

                - out_dec: Output from decoder. If return_intermediate_dec \
                      is True output has shape [num_dec_layers, bs,
                      num_query, embed_dims], else has shape [1, bs, \
                      num_query, embed_dims].
                - memory: Output results from encoder, with shape \
                      [bs, embed_dims, h, w].
        """
        bs, c, h, w = x.shape
        # use `view` instead of `flatten` for dynamically exporting to ONNX
        x = x.view(bs, c, -1).permute(2, 0, 1)  # [bs, c, h, w] -> [h*w, bs, c]
        pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1)
        query_embed = query_embed.unsqueeze(1).repeat(
            1, bs, 1)  # [num_query, dim] -> [num_query, bs, dim]
        mask = mask.view(bs, -1)  # [bs, h, w] -> [bs, h*w]
        memory = self.encoder(
            query=x,
            key=None,
            value=None,
            query_pos=pos_embed,
            query_key_padding_mask=mask)
        target = torch.zeros_like(query_embed)
        # out_dec: [num_layers, num_query, bs, dim]
        out_dec = self.decoder(
            query=target,
            key=memory,
            value=memory,
            key_pos=pos_embed,
            query_pos=query_embed,
            key_padding_mask=mask)
        out_dec = out_dec.transpose(1, 2)
        memory = memory.permute(1, 2, 0).reshape(bs, c, h, w)
        return out_dec, memory


@MODELS.register_module(force=True)
class DeformableDetrTransformerDecoder(TransformerLayerSequence):
    """Implements the decoder in DETR transformer.

    Args:
        return_intermediate (bool): Whether to return intermediate outputs.
        coder_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`.
    """

    def __init__(self, *args, return_intermediate=False, **kwargs):

        super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs)
        self.return_intermediate = return_intermediate

    def forward(self,
                query,
                *args,
                reference_points=None,
                valid_ratios=None,
                reg_branches=None,
                **kwargs):
        """Forward function for `TransformerDecoder`.

        Args:
            query (Tensor): Input query with shape
                `(num_query, bs, embed_dims)`.
            reference_points (Tensor): The reference
                points of offset. has shape
                (bs, num_query, 4) when as_two_stage,
                otherwise has shape ((bs, num_query, 2).
            valid_ratios (Tensor): The radios of valid
                points on the feature map, has shape
                (bs, num_levels, 2)
            reg_branch: (obj:`nn.ModuleList`): Used for
                refining the regression results. Only would
                be passed when with_box_refine is True,
                otherwise would be passed a `None`.

        Returns:
            Tensor: Results with shape [1, num_query, bs, embed_dims] when
                return_intermediate is `False`, otherwise it has shape
                [num_layers, num_query, bs, embed_dims].
        """
        output = query
        intermediate = []
        intermediate_reference_points = []
        for lid, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = reference_points[:, :, None] * \
                    torch.cat([valid_ratios, valid_ratios], -1)[:, None]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = reference_points[:, :, None] * \
                    valid_ratios[:, None]
            output = layer(
                output,
                *args,
                reference_points=reference_points_input,
                **kwargs)
            output = output.permute(1, 0, 2)

            if reg_branches is not None:
                tmp = reg_branches[lid](output)
                if reference_points.shape[-1] == 4:
                    new_reference_points = tmp + inverse_sigmoid(
                        reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                else:
                    assert reference_points.shape[-1] == 2
                    new_reference_points = tmp
                    new_reference_points[..., :2] = tmp[
                        ..., :2] + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                reference_points = new_reference_points.detach()

            output = output.permute(1, 0, 2)
            if self.return_intermediate:
                intermediate.append(output)
                intermediate_reference_points.append(reference_points)

        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(
                intermediate_reference_points)

        return output, reference_points


@MODELS.register_module(force=True)
class DeformableDetrTransformer(Transformer):
    """Implements the DeformableDETR transformer.

    Args:
        as_two_stage (bool): Generate query from encoder features.
            Default: False.
        num_feature_levels (int): Number of feature maps from FPN:
            Default: 4.
        two_stage_num_proposals (int): Number of proposals when set
            `as_two_stage` as True. Default: 300.
    """

    def __init__(self,
                 as_two_stage=False,
                 num_feature_levels=4,
                 two_stage_num_proposals=300,
                 **kwargs):
        super(DeformableDetrTransformer, self).__init__(**kwargs)
        self.as_two_stage = as_two_stage
        self.num_feature_levels = num_feature_levels
        self.two_stage_num_proposals = two_stage_num_proposals
        self.embed_dims = self.encoder.embed_dims
        self.init_layers()

    def init_layers(self):
        """Initialize layers of the DeformableDetrTransformer."""
        self.level_embeds = nn.Parameter(
            torch.Tensor(self.num_feature_levels, self.embed_dims))

        if self.as_two_stage:
            self.enc_output = nn.Linear(self.embed_dims, self.embed_dims)
            self.enc_output_norm = nn.LayerNorm(self.embed_dims)
            self.pos_trans = nn.Linear(self.embed_dims * 2,
                                       self.embed_dims * 2)
            self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2)
        else:
            self.reference_points = nn.Linear(self.embed_dims, 2)

    def init_weights(self):
        """Initialize the transformer weights."""
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MultiScaleDeformableAttention):
                m.init_weights()
        if not self.as_two_stage:
            xavier_init(self.reference_points, distribution='uniform', bias=0.)
        normal_(self.level_embeds)

    def gen_encoder_output_proposals(self, memory, memory_padding_mask,
                                     spatial_shapes):
        """Generate proposals from encoded memory.

        Args:
            memory (Tensor) : The output of encoder,
                has shape (bs, num_key, embed_dim).  num_key is
                equal the number of points on feature map from
                all level.
            memory_padding_mask (Tensor): Padding mask for memory.
                has shape (bs, num_key).
            spatial_shapes (Tensor): The shape of all feature maps.
                has shape (num_level, 2).

        Returns:
            tuple: A tuple of feature map and bbox prediction.

                - output_memory (Tensor): The input of decoder,  \
                    has shape (bs, num_key, embed_dim).  num_key is \
                    equal the number of points on feature map from \
                    all levels.
                - output_proposals (Tensor): The normalized proposal \
                    after a inverse sigmoid, has shape \
                    (bs, num_keys, 4).
        """

        N, S, C = memory.shape
        proposals = []
        _cur = 0
        for lvl, (H, W) in enumerate(spatial_shapes):
            mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view(
                N, H, W, 1)
            valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
            valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)

            grid_y, grid_x = torch.meshgrid(
                torch.linspace(
                    0, H - 1, H, dtype=torch.float32, device=memory.device),
                torch.linspace(
                    0, W - 1, W, dtype=torch.float32, device=memory.device))
            grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)

            scale = torch.cat([valid_W.unsqueeze(-1),
                               valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2)
            grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale
            wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
            proposal = torch.cat((grid, wh), -1).view(N, -1, 4)
            proposals.append(proposal)
            _cur += (H * W)
        output_proposals = torch.cat(proposals, 1)
        output_proposals_valid = ((output_proposals > 0.01) &
                                  (output_proposals < 0.99)).all(
                                      -1, keepdim=True)
        output_proposals = torch.log(output_proposals / (1 - output_proposals))
        output_proposals = output_proposals.masked_fill(
            memory_padding_mask.unsqueeze(-1), float('inf'))
        output_proposals = output_proposals.masked_fill(
            ~output_proposals_valid, float('inf'))

        output_memory = memory
        output_memory = output_memory.masked_fill(
            memory_padding_mask.unsqueeze(-1), float(0))
        output_memory = output_memory.masked_fill(~output_proposals_valid,
                                                  float(0))
        output_memory = self.enc_output_norm(self.enc_output(output_memory))
        return output_memory, output_proposals

    @staticmethod
    def get_reference_points(spatial_shapes, valid_ratios, device):
        """Get the reference points used in decoder.

        Args:
            spatial_shapes (Tensor): The shape of all
                feature maps, has shape (num_level, 2).
            valid_ratios (Tensor): The radios of valid
                points on the feature map, has shape
                (bs, num_levels, 2)
            device (obj:`device`): The device where
                reference_points should be.

        Returns:
            Tensor: reference points used in decoder, has \
                shape (bs, num_keys, num_levels, 2).
        """
        reference_points_list = []
        for lvl, (H, W) in enumerate(spatial_shapes):
            ref_y, ref_x = torch.meshgrid(
                torch.linspace(
                    0.5, H - 0.5, H, dtype=torch.float32, device=device),
                torch.linspace(
                    0.5, W - 0.5, W, dtype=torch.float32, device=device))
            ref_y = ref_y.reshape(-1)[None] / (
                valid_ratios[:, None, lvl, 1] * H)
            ref_x = ref_x.reshape(-1)[None] / (
                valid_ratios[:, None, lvl, 0] * W)
            ref = torch.stack((ref_x, ref_y), -1)
            reference_points_list.append(ref)
        reference_points = torch.cat(reference_points_list, 1)
        reference_points = reference_points[:, :, None] * valid_ratios[:, None]
        return reference_points

    def get_valid_ratio(self, mask):
        """Get the valid radios of feature maps of all  level."""
        _, H, W = mask.shape
        valid_H = torch.sum(~mask[:, :, 0], 1)
        valid_W = torch.sum(~mask[:, 0, :], 1)
        valid_ratio_h = valid_H.float() / H
        valid_ratio_w = valid_W.float() / W
        valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
        return valid_ratio

    def get_proposal_pos_embed(self,
                               proposals,
                               num_pos_feats=128,
                               temperature=10000):
        """Get the position embedding of proposal."""
        scale = 2 * math.pi
        dim_t = torch.arange(
            num_pos_feats, dtype=torch.float32, device=proposals.device)
        dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
        # N, L, 4
        proposals = proposals.sigmoid() * scale
        # N, L, 4, 128
        pos = proposals[:, :, :, None] / dim_t
        # N, L, 4, 64, 2
        pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()),
                          dim=4).flatten(2)
        return pos

    def forward(self,
                mlvl_feats,
                mlvl_masks,
                query_embed,
                mlvl_pos_embeds,
                reg_branches=None,
                cls_branches=None,
                **kwargs):
        """Forward function for `Transformer`.

        Args:
            mlvl_feats (list(Tensor)): Input queries from
                different level. Each element has shape
                [bs, embed_dims, h, w].
            mlvl_masks (list(Tensor)): The key_padding_mask from
                different level used for encoder and decoder,
                each element has shape  [bs, h, w].
            query_embed (Tensor): The query embedding for decoder,
                with shape [num_query, c].
            mlvl_pos_embeds (list(Tensor)): The positional encoding
                of feats from different level, has the shape
                 [bs, embed_dims, h, w].
            reg_branches (obj:`nn.ModuleList`): Regression heads for
                feature maps from each decoder layer. Only would
                be passed when
                `with_box_refine` is True. Default to None.
            cls_branches (obj:`nn.ModuleList`): Classification heads
                for feature maps from each decoder layer. Only would
                 be passed when `as_two_stage`
                 is True. Default to None.


        Returns:
            tuple[Tensor]: results of decoder containing the following tensor.

                - inter_states: Outputs from decoder. If
                    return_intermediate_dec is True output has shape \
                      (num_dec_layers, bs, num_query, embed_dims), else has \
                      shape (1, bs, num_query, embed_dims).
                - init_reference_out: The initial value of reference \
                    points, has shape (bs, num_queries, 4).
                - inter_references_out: The internal value of reference \
                    points in decoder, has shape \
                    (num_dec_layers, bs,num_query, embed_dims)
                - enc_outputs_class: The classification score of \
                    proposals generated from \
                    encoder's feature maps, has shape \
                    (batch, h*w, num_classes). \
                    Only would be returned when `as_two_stage` is True, \
                    otherwise None.
                - enc_outputs_coord_unact: The regression results \
                    generated from encoder's feature maps., has shape \
                    (batch, h*w, 4). Only would \
                    be returned when `as_two_stage` is True, \
                    otherwise None.
        """
        assert self.as_two_stage or query_embed is not None

        feat_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (feat, mask, pos_embed) in enumerate(
                zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
            bs, c, h, w = feat.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            feat = feat.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            feat_flatten.append(feat)
            mask_flatten.append(mask)
        feat_flatten = torch.cat(feat_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=feat_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack(
            [self.get_valid_ratio(m) for m in mlvl_masks], 1)

        reference_points = \
            self.get_reference_points(spatial_shapes,
                                      valid_ratios,
                                      device=feat.device)

        feat_flatten = feat_flatten.permute(1, 0, 2)  # (H*W, bs, embed_dims)
        lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute(
            1, 0, 2)  # (H*W, bs, embed_dims)
        memory = self.encoder(
            query=feat_flatten,
            key=None,
            value=None,
            query_pos=lvl_pos_embed_flatten,
            query_key_padding_mask=mask_flatten,
            spatial_shapes=spatial_shapes,
            reference_points=reference_points,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            **kwargs)

        memory = memory.permute(1, 0, 2)
        bs, _, c = memory.shape
        if self.as_two_stage:
            output_memory, output_proposals = \
                self.gen_encoder_output_proposals(
                    memory, mask_flatten, spatial_shapes)
            enc_outputs_class = cls_branches[self.decoder.num_layers](
                output_memory)
            enc_outputs_coord_unact = \
                reg_branches[
                    self.decoder.num_layers](output_memory) + output_proposals

            topk = self.two_stage_num_proposals
            # We only use the first channel in enc_outputs_class as foreground,
            # the other (num_classes - 1) channels are actually not used.
            # Its targets are set to be 0s, which indicates the first
            # class (foreground) because we use [0, num_classes - 1] to
            # indicate class labels, background class is indicated by
            # num_classes (similar convention in RPN).
            # See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa
            # This follows the official implementation of Deformable DETR.
            topk_proposals = torch.topk(
                enc_outputs_class[..., 0], topk, dim=1)[1]
            topk_coords_unact = torch.gather(
                enc_outputs_coord_unact, 1,
                topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
            topk_coords_unact = topk_coords_unact.detach()
            reference_points = topk_coords_unact.sigmoid()
            init_reference_out = reference_points
            pos_trans_out = self.pos_trans_norm(
                self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
            query_pos, query = torch.split(pos_trans_out, c, dim=2)
        else:
            query_pos, query = torch.split(query_embed, c, dim=1)
            query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1)
            query = query.unsqueeze(0).expand(bs, -1, -1)
            reference_points = self.reference_points(query_pos).sigmoid()
            init_reference_out = reference_points

        # decoder
        query = query.permute(1, 0, 2)
        memory = memory.permute(1, 0, 2)
        query_pos = query_pos.permute(1, 0, 2)
        inter_states, inter_references = self.decoder(
            query=query,
            key=None,
            value=memory,
            query_pos=query_pos,
            key_padding_mask=mask_flatten,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            reg_branches=reg_branches,
            **kwargs)

        inter_references_out = inter_references
        if self.as_two_stage:
            return inter_states, init_reference_out,\
                inter_references_out, enc_outputs_class,\
                enc_outputs_coord_unact
        return inter_states, init_reference_out, \
            inter_references_out, None, None


@MODELS.register_module()
class CoDeformableDetrTransformerDecoder(TransformerLayerSequence):
    """Implements the decoder in DETR transformer.

    Args:
        return_intermediate (bool): Whether to return intermediate outputs.
        coder_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`.
    """

    def __init__(self,
                 *args,
                 return_intermediate=False,
                 look_forward_twice=False,
                 **kwargs):

        super(CoDeformableDetrTransformerDecoder,
              self).__init__(*args, **kwargs)
        self.return_intermediate = return_intermediate
        self.look_forward_twice = look_forward_twice

    def forward(self,
                query,
                *args,
                reference_points=None,
                valid_ratios=None,
                reg_branches=None,
                **kwargs):
        """Forward function for `TransformerDecoder`.

        Args:
            query (Tensor): Input query with shape
                `(num_query, bs, embed_dims)`.
            reference_points (Tensor): The reference
                points of offset. has shape
                (bs, num_query, 4) when as_two_stage,
                otherwise has shape ((bs, num_query, 2).
            valid_ratios (Tensor): The radios of valid
                points on the feature map, has shape
                (bs, num_levels, 2)
            reg_branch: (obj:`nn.ModuleList`): Used for
                refining the regression results. Only would
                be passed when with_box_refine is True,
                otherwise would be passed a `None`.

        Returns:
            Tensor: Results with shape [1, num_query, bs, embed_dims] when
                return_intermediate is `False`, otherwise it has shape
                [num_layers, num_query, bs, embed_dims].
        """
        output = query
        intermediate = []
        intermediate_reference_points = []
        for lid, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = reference_points[:, :, None] * \
                    torch.cat([valid_ratios, valid_ratios], -1)[:, None]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = reference_points[:, :, None] * \
                    valid_ratios[:, None]
            output = layer(
                output,
                *args,
                reference_points=reference_points_input,
                **kwargs)
            output = output.permute(1, 0, 2)

            if reg_branches is not None:
                tmp = reg_branches[lid](output)
                if reference_points.shape[-1] == 4:
                    new_reference_points = tmp + inverse_sigmoid(
                        reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                else:
                    assert reference_points.shape[-1] == 2
                    new_reference_points = tmp
                    new_reference_points[..., :2] = tmp[
                        ..., :2] + inverse_sigmoid(reference_points)
                    new_reference_points = new_reference_points.sigmoid()
                reference_points = new_reference_points.detach()

            output = output.permute(1, 0, 2)
            if self.return_intermediate:
                intermediate.append(output)
                intermediate_reference_points.append(
                    new_reference_points if self.
                    look_forward_twice else reference_points)
        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(
                intermediate_reference_points)

        return output, reference_points


@MODELS.register_module()
class CoDeformableDetrTransformer(DeformableDetrTransformer):

    def __init__(self,
                 mixed_selection=True,
                 with_pos_coord=True,
                 with_coord_feat=True,
                 num_co_heads=1,
                 **kwargs):
        self.mixed_selection = mixed_selection
        self.with_pos_coord = with_pos_coord
        self.with_coord_feat = with_coord_feat
        self.num_co_heads = num_co_heads
        super(CoDeformableDetrTransformer, self).__init__(**kwargs)
        self._init_layers()

    def _init_layers(self):
        """Initialize layers of the CoDeformableDetrTransformer."""
        if self.with_pos_coord:
            if self.num_co_heads > 0:
                # bug: this code should be 'self.head_pos_embed =
                # nn.Embedding(self.num_co_heads, self.embed_dims)',
                # we keep this bug for reproducing our results with ResNet-50.
                # You can fix this bug when reproducing results with
                # swin transformer.
                self.head_pos_embed = nn.Embedding(self.num_co_heads, 1, 1,
                                                   self.embed_dims)
                self.aux_pos_trans = nn.ModuleList()
                self.aux_pos_trans_norm = nn.ModuleList()
                self.pos_feats_trans = nn.ModuleList()
                self.pos_feats_norm = nn.ModuleList()
                for i in range(self.num_co_heads):
                    self.aux_pos_trans.append(
                        nn.Linear(self.embed_dims * 2, self.embed_dims * 2))
                    self.aux_pos_trans_norm.append(
                        nn.LayerNorm(self.embed_dims * 2))
                    if self.with_coord_feat:
                        self.pos_feats_trans.append(
                            nn.Linear(self.embed_dims, self.embed_dims))
                        self.pos_feats_norm.append(
                            nn.LayerNorm(self.embed_dims))

    def get_proposal_pos_embed(self,
                               proposals,
                               num_pos_feats=128,
                               temperature=10000):
        """Get the position embedding of proposal."""
        num_pos_feats = self.embed_dims // 2
        scale = 2 * math.pi
        dim_t = torch.arange(
            num_pos_feats, dtype=torch.float32, device=proposals.device)
        dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
        # N, L, 4
        proposals = proposals.sigmoid() * scale
        # N, L, 4, 128
        pos = proposals[:, :, :, None] / dim_t
        # N, L, 4, 64, 2
        pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()),
                          dim=4).flatten(2)
        return pos

    def forward(self,
                mlvl_feats,
                mlvl_masks,
                query_embed,
                mlvl_pos_embeds,
                reg_branches=None,
                cls_branches=None,
                return_encoder_output=False,
                attn_masks=None,
                **kwargs):
        """Forward function for `Transformer`.

        Args:
            mlvl_feats (list(Tensor)): Input queries from
                different level. Each element has shape
                [bs, embed_dims, h, w].
            mlvl_masks (list(Tensor)): The key_padding_mask from
                different level used for encoder and decoder,
                each element has shape  [bs, h, w].
            query_embed (Tensor): The query embedding for decoder,
                with shape [num_query, c].
            mlvl_pos_embeds (list(Tensor)): The positional encoding
                of feats from different level, has the shape
                 [bs, embed_dims, h, w].
            reg_branches (obj:`nn.ModuleList`): Regression heads for
                feature maps from each decoder layer. Only would
                be passed when
                `with_box_refine` is True. Default to None.
            cls_branches (obj:`nn.ModuleList`): Classification heads
                for feature maps from each decoder layer. Only would
                 be passed when `as_two_stage`
                 is True. Default to None.


        Returns:
            tuple[Tensor]: results of decoder containing the following tensor.

                - inter_states: Outputs from decoder. If
                    return_intermediate_dec is True output has shape \
                      (num_dec_layers, bs, num_query, embed_dims), else has \
                      shape (1, bs, num_query, embed_dims).
                - init_reference_out: The initial value of reference \
                    points, has shape (bs, num_queries, 4).
                - inter_references_out: The internal value of reference \
                    points in decoder, has shape \
                    (num_dec_layers, bs,num_query, embed_dims)
                - enc_outputs_class: The classification score of \
                    proposals generated from \
                    encoder's feature maps, has shape \
                    (batch, h*w, num_classes). \
                    Only would be returned when `as_two_stage` is True, \
                    otherwise None.
                - enc_outputs_coord_unact: The regression results \
                    generated from encoder's feature maps., has shape \
                    (batch, h*w, 4). Only would \
                    be returned when `as_two_stage` is True, \
                    otherwise None.
        """
        assert self.as_two_stage or query_embed is not None

        feat_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (feat, mask, pos_embed) in enumerate(
                zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
            bs, c, h, w = feat.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            feat = feat.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            feat_flatten.append(feat)
            mask_flatten.append(mask)
        feat_flatten = torch.cat(feat_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=feat_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack(
            [self.get_valid_ratio(m) for m in mlvl_masks], 1)

        reference_points = \
            self.get_reference_points(spatial_shapes,
                                      valid_ratios,
                                      device=feat.device)

        feat_flatten = feat_flatten.permute(1, 0, 2)  # (H*W, bs, embed_dims)
        lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute(
            1, 0, 2)  # (H*W, bs, embed_dims)
        memory = self.encoder(
            query=feat_flatten,
            key=None,
            value=None,
            query_pos=lvl_pos_embed_flatten,
            query_key_padding_mask=mask_flatten,
            spatial_shapes=spatial_shapes,
            reference_points=reference_points,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            **kwargs)

        memory = memory.permute(1, 0, 2)
        bs, _, c = memory.shape
        if self.as_two_stage:
            output_memory, output_proposals = \
                self.gen_encoder_output_proposals(
                    memory, mask_flatten, spatial_shapes)
            enc_outputs_class = cls_branches[self.decoder.num_layers](
                output_memory)
            enc_outputs_coord_unact = \
                reg_branches[
                    self.decoder.num_layers](output_memory) + output_proposals

            topk = self.two_stage_num_proposals
            topk = query_embed.shape[0]
            topk_proposals = torch.topk(
                enc_outputs_class[..., 0], topk, dim=1)[1]
            topk_coords_unact = torch.gather(
                enc_outputs_coord_unact, 1,
                topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
            topk_coords_unact = topk_coords_unact.detach()
            reference_points = topk_coords_unact.sigmoid()
            init_reference_out = reference_points
            pos_trans_out = self.pos_trans_norm(
                self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))

            if not self.mixed_selection:
                query_pos, query = torch.split(pos_trans_out, c, dim=2)
            else:
                # query_embed here is the content embed for deformable DETR
                query = query_embed.unsqueeze(0).expand(bs, -1, -1)
                query_pos, _ = torch.split(pos_trans_out, c, dim=2)
        else:
            query_pos, query = torch.split(query_embed, c, dim=1)
            query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1)
            query = query.unsqueeze(0).expand(bs, -1, -1)
            reference_points = self.reference_points(query_pos).sigmoid()
            init_reference_out = reference_points

        # decoder
        query = query.permute(1, 0, 2)
        memory = memory.permute(1, 0, 2)
        query_pos = query_pos.permute(1, 0, 2)
        inter_states, inter_references = self.decoder(
            query=query,
            key=None,
            value=memory,
            query_pos=query_pos,
            key_padding_mask=mask_flatten,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            reg_branches=reg_branches,
            attn_masks=attn_masks,
            **kwargs)

        inter_references_out = inter_references
        if self.as_two_stage:
            if return_encoder_output:
                return inter_states, init_reference_out,\
                    inter_references_out, enc_outputs_class,\
                    enc_outputs_coord_unact, memory
            return inter_states, init_reference_out,\
                inter_references_out, enc_outputs_class,\
                enc_outputs_coord_unact
        if return_encoder_output:
            return inter_states, init_reference_out, \
                inter_references_out, None, None, memory
        return inter_states, init_reference_out, \
            inter_references_out, None, None

    def forward_aux(self,
                    mlvl_feats,
                    mlvl_masks,
                    query_embed,
                    mlvl_pos_embeds,
                    pos_anchors,
                    pos_feats=None,
                    reg_branches=None,
                    cls_branches=None,
                    return_encoder_output=False,
                    attn_masks=None,
                    head_idx=0,
                    **kwargs):
        feat_flatten = []
        mask_flatten = []
        spatial_shapes = []
        for lvl, (feat, mask, pos_embed) in enumerate(
                zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
            bs, c, h, w = feat.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            feat = feat.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            feat_flatten.append(feat)
            mask_flatten.append(mask)
        feat_flatten = torch.cat(feat_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=feat_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack(
            [self.get_valid_ratio(m) for m in mlvl_masks], 1)

        feat_flatten = feat_flatten.permute(1, 0, 2)  # (H*W, bs, embed_dims)

        memory = feat_flatten
        memory = memory.permute(1, 0, 2)
        bs, _, c = memory.shape

        topk_coords_unact = inverse_sigmoid(pos_anchors)
        reference_points = pos_anchors
        init_reference_out = reference_points
        if self.num_co_heads > 0:
            pos_trans_out = self.aux_pos_trans_norm[head_idx](
                self.aux_pos_trans[head_idx](
                    self.get_proposal_pos_embed(topk_coords_unact)))
            query_pos, query = torch.split(pos_trans_out, c, dim=2)
            if self.with_coord_feat:
                query = query + self.pos_feats_norm[head_idx](
                    self.pos_feats_trans[head_idx](pos_feats))
                query_pos = query_pos + self.head_pos_embed.weight[head_idx]

        # decoder
        query = query.permute(1, 0, 2)
        memory = memory.permute(1, 0, 2)
        query_pos = query_pos.permute(1, 0, 2)
        inter_states, inter_references = self.decoder(
            query=query,
            key=None,
            value=memory,
            query_pos=query_pos,
            key_padding_mask=mask_flatten,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            reg_branches=reg_branches,
            attn_masks=attn_masks,
            **kwargs)

        inter_references_out = inter_references
        return inter_states, init_reference_out, \
            inter_references_out


def build_MLP(input_dim, hidden_dim, output_dim, num_layers):
    assert num_layers > 1, \
        f'num_layers should be greater than 1 but got {num_layers}'
    h = [hidden_dim] * (num_layers - 1)
    layers = list()
    for n, k in zip([input_dim] + h[:-1], h):
        layers.extend((nn.Linear(n, k), nn.ReLU()))
    # Note that the relu func of MLP in original DETR repo is set
    # 'inplace=False', however the ReLU cfg of FFN in mmdet is set
    # 'inplace=True' by default.
    layers.append(nn.Linear(hidden_dim, output_dim))
    return nn.Sequential(*layers)


@MODELS.register_module()
class DinoTransformerDecoder(DeformableDetrTransformerDecoder):

    def __init__(self, *args, **kwargs):
        super(DinoTransformerDecoder, self).__init__(*args, **kwargs)
        self._init_layers()

    def _init_layers(self):
        self.ref_point_head = build_MLP(self.embed_dims * 2, self.embed_dims,
                                        self.embed_dims, 2)
        self.norm = nn.LayerNorm(self.embed_dims)

    @staticmethod
    def gen_sineembed_for_position(pos_tensor, pos_feat):
        # n_query, bs, _ = pos_tensor.size()
        # sineembed_tensor = torch.zeros(n_query, bs, 256)
        scale = 2 * math.pi
        dim_t = torch.arange(
            pos_feat, dtype=torch.float32, device=pos_tensor.device)
        dim_t = 10000**(2 * (dim_t // 2) / pos_feat)
        x_embed = pos_tensor[:, :, 0] * scale
        y_embed = pos_tensor[:, :, 1] * scale
        pos_x = x_embed[:, :, None] / dim_t
        pos_y = y_embed[:, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()),
                            dim=3).flatten(2)
        pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()),
                            dim=3).flatten(2)
        if pos_tensor.size(-1) == 2:
            pos = torch.cat((pos_y, pos_x), dim=2)
        elif pos_tensor.size(-1) == 4:
            w_embed = pos_tensor[:, :, 2] * scale
            pos_w = w_embed[:, :, None] / dim_t
            pos_w = torch.stack(
                (pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()),
                dim=3).flatten(2)

            h_embed = pos_tensor[:, :, 3] * scale
            pos_h = h_embed[:, :, None] / dim_t
            pos_h = torch.stack(
                (pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()),
                dim=3).flatten(2)

            pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
        else:
            raise ValueError('Unknown pos_tensor shape(-1):{}'.format(
                pos_tensor.size(-1)))
        return pos

    def forward(self,
                query,
                *args,
                reference_points=None,
                valid_ratios=None,
                reg_branches=None,
                **kwargs):
        output = query
        intermediate = []
        intermediate_reference_points = [reference_points]
        for lid, layer in enumerate(self.layers):
            if reference_points.shape[-1] == 4:
                reference_points_input = \
                    reference_points[:, :, None] * torch.cat(
                        [valid_ratios, valid_ratios], -1)[:, None]
            else:
                assert reference_points.shape[-1] == 2
                reference_points_input = \
                    reference_points[:, :, None] * valid_ratios[:, None]

            query_sine_embed = self.gen_sineembed_for_position(
                reference_points_input[:, :, 0, :], self.embed_dims // 2)
            query_pos = self.ref_point_head(query_sine_embed)

            query_pos = query_pos.permute(1, 0, 2)
            output = layer(
                output,
                *args,
                query_pos=query_pos,
                reference_points=reference_points_input,
                **kwargs)
            output = output.permute(1, 0, 2)

            if reg_branches is not None:
                tmp = reg_branches[lid](output)
                assert reference_points.shape[-1] == 4
                new_reference_points = tmp + inverse_sigmoid(
                    reference_points, eps=1e-3)
                new_reference_points = new_reference_points.sigmoid()
                reference_points = new_reference_points.detach()

            output = output.permute(1, 0, 2)
            if self.return_intermediate:
                intermediate.append(self.norm(output))
                intermediate_reference_points.append(new_reference_points)
                # NOTE this is for the "Look Forward Twice" module,
                # in the DeformDETR, reference_points was appended.

        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(
                intermediate_reference_points)

        return output, reference_points


@MODELS.register_module()
class CoDinoTransformer(CoDeformableDetrTransformer):

    def __init__(self, *args, **kwargs):
        super(CoDinoTransformer, self).__init__(*args, **kwargs)

    def init_layers(self):
        """Initialize layers of the DinoTransformer."""
        self.level_embeds = nn.Parameter(
            torch.Tensor(self.num_feature_levels, self.embed_dims))
        self.enc_output = nn.Linear(self.embed_dims, self.embed_dims)
        self.enc_output_norm = nn.LayerNorm(self.embed_dims)
        self.query_embed = nn.Embedding(self.two_stage_num_proposals,
                                        self.embed_dims)

    def _init_layers(self):
        if self.with_pos_coord:
            if self.num_co_heads > 0:
                self.aux_pos_trans = nn.ModuleList()
                self.aux_pos_trans_norm = nn.ModuleList()
                self.pos_feats_trans = nn.ModuleList()
                self.pos_feats_norm = nn.ModuleList()
                for i in range(self.num_co_heads):
                    self.aux_pos_trans.append(
                        nn.Linear(self.embed_dims * 2, self.embed_dims))
                    self.aux_pos_trans_norm.append(
                        nn.LayerNorm(self.embed_dims))
                    if self.with_coord_feat:
                        self.pos_feats_trans.append(
                            nn.Linear(self.embed_dims, self.embed_dims))
                        self.pos_feats_norm.append(
                            nn.LayerNorm(self.embed_dims))

    def init_weights(self):
        super().init_weights()
        nn.init.normal_(self.query_embed.weight.data)

    def forward(self,
                mlvl_feats,
                mlvl_masks,
                query_embed,
                mlvl_pos_embeds,
                dn_label_query,
                dn_bbox_query,
                attn_mask,
                reg_branches=None,
                cls_branches=None,
                **kwargs):
        assert self.as_two_stage and query_embed is None, \
            'as_two_stage must be True for DINO'

        feat_flatten = []
        mask_flatten = []
        lvl_pos_embed_flatten = []
        spatial_shapes = []
        for lvl, (feat, mask, pos_embed) in enumerate(
                zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
            bs, c, h, w = feat.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            feat = feat.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            pos_embed = pos_embed.flatten(2).transpose(1, 2)
            lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1)
            lvl_pos_embed_flatten.append(lvl_pos_embed)
            feat_flatten.append(feat)
            mask_flatten.append(mask)
        feat_flatten = torch.cat(feat_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=feat_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack(
            [self.get_valid_ratio(m) for m in mlvl_masks], 1)

        reference_points = self.get_reference_points(
            spatial_shapes, valid_ratios, device=feat.device)

        feat_flatten = feat_flatten.permute(1, 0, 2)  # (H*W, bs, embed_dims)
        lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute(
            1, 0, 2)  # (H*W, bs, embed_dims)
        memory = self.encoder(
            query=feat_flatten,
            key=None,
            value=None,
            query_pos=lvl_pos_embed_flatten,
            query_key_padding_mask=mask_flatten,
            spatial_shapes=spatial_shapes,
            reference_points=reference_points,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            **kwargs)
        memory = memory.permute(1, 0, 2)
        bs, _, c = memory.shape

        output_memory, output_proposals = self.gen_encoder_output_proposals(
            memory, mask_flatten, spatial_shapes)
        enc_outputs_class = cls_branches[self.decoder.num_layers](
            output_memory)
        enc_outputs_coord_unact = reg_branches[self.decoder.num_layers](
            output_memory) + output_proposals
        cls_out_features = cls_branches[self.decoder.num_layers].out_features
        topk = self.two_stage_num_proposals
        # NOTE In DeformDETR, enc_outputs_class[..., 0] is used for topk
        topk_indices = torch.topk(enc_outputs_class.max(-1)[0], topk, dim=1)[1]

        topk_score = torch.gather(
            enc_outputs_class, 1,
            topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features))
        topk_coords_unact = torch.gather(
            enc_outputs_coord_unact, 1,
            topk_indices.unsqueeze(-1).repeat(1, 1, 4))
        topk_anchor = topk_coords_unact.sigmoid()
        topk_coords_unact = topk_coords_unact.detach()

        query = self.query_embed.weight[:, None, :].repeat(1, bs,
                                                           1).transpose(0, 1)
        # NOTE the query_embed here is not spatial query as in DETR.
        # It is actually content query, which is named tgt in other
        # DETR-like models
        if dn_label_query is not None:
            query = torch.cat([dn_label_query, query], dim=1)
        if dn_bbox_query is not None:
            reference_points = torch.cat([dn_bbox_query, topk_coords_unact],
                                         dim=1)
        else:
            reference_points = topk_coords_unact
        reference_points = reference_points.sigmoid()
        # decoder
        query = query.permute(1, 0, 2)
        memory = memory.permute(1, 0, 2)
        inter_states, inter_references = self.decoder(
            query=query,
            key=None,
            value=memory,
            attn_masks=attn_mask,
            key_padding_mask=mask_flatten,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            reg_branches=reg_branches,
            **kwargs)

        inter_references_out = inter_references

        return inter_states, inter_references_out, \
            topk_score, topk_anchor, memory

    def forward_aux(self,
                    mlvl_feats,
                    mlvl_masks,
                    query_embed,
                    mlvl_pos_embeds,
                    pos_anchors,
                    pos_feats=None,
                    reg_branches=None,
                    cls_branches=None,
                    return_encoder_output=False,
                    attn_masks=None,
                    head_idx=0,
                    **kwargs):
        feat_flatten = []
        mask_flatten = []
        spatial_shapes = []
        for lvl, (feat, mask, pos_embed) in enumerate(
                zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)):
            bs, c, h, w = feat.shape
            spatial_shape = (h, w)
            spatial_shapes.append(spatial_shape)
            feat = feat.flatten(2).transpose(1, 2)
            mask = mask.flatten(1)
            feat_flatten.append(feat)
            mask_flatten.append(mask)
        feat_flatten = torch.cat(feat_flatten, 1)
        mask_flatten = torch.cat(mask_flatten, 1)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=feat_flatten.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        valid_ratios = torch.stack(
            [self.get_valid_ratio(m) for m in mlvl_masks], 1)

        feat_flatten = feat_flatten.permute(1, 0, 2)  # (H*W, bs, embed_dims)

        memory = feat_flatten
        memory = memory.permute(1, 0, 2)
        bs, _, c = memory.shape

        topk_coords_unact = inverse_sigmoid(pos_anchors)
        reference_points = pos_anchors
        if self.num_co_heads > 0:
            pos_trans_out = self.aux_pos_trans_norm[head_idx](
                self.aux_pos_trans[head_idx](
                    self.get_proposal_pos_embed(topk_coords_unact)))
            query = pos_trans_out
            if self.with_coord_feat:
                query = query + self.pos_feats_norm[head_idx](
                    self.pos_feats_trans[head_idx](pos_feats))

        # decoder
        query = query.permute(1, 0, 2)
        memory = memory.permute(1, 0, 2)
        inter_states, inter_references = self.decoder(
            query=query,
            key=None,
            value=memory,
            attn_masks=None,
            key_padding_mask=mask_flatten,
            reference_points=reference_points,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            valid_ratios=valid_ratios,
            reg_branches=reg_branches,
            **kwargs)

        inter_references_out = inter_references

        return inter_states, inter_references_out


@MODELS.register_module()
class DetrTransformerEncoder(TransformerLayerSequence):
    """TransformerEncoder of DETR.

    Args:
        post_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`. Only used when `self.pre_norm` is `True`
    """

    def __init__(self,
                 *args,
                 post_norm_cfg=dict(type='LN'),
                 with_cp=-1,
                 **kwargs):
        super(DetrTransformerEncoder, self).__init__(*args, **kwargs)
        if post_norm_cfg is not None:
            self.post_norm = build_norm_layer(
                post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None
        else:
            assert not self.pre_norm, f'Use prenorm in ' \
                                      f'{self.__class__.__name__},' \
                                      f'Please specify post_norm_cfg'
            self.post_norm = None
        self.with_cp = with_cp
        if self.with_cp > 0:
            if checkpoint_wrapper is None:
                warnings.warn('If you want to reduce GPU memory usage, \
                              please install fairscale by executing the \
                              following command: pip install fairscale.')
                return
            for i in range(self.with_cp):
                self.layers[i] = checkpoint_wrapper(self.layers[i])


@MODELS.register_module()
class DetrTransformerDecoderLayer(BaseTransformerLayer):
    """Implements decoder layer in DETR transformer.

    Args:
        attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )):
            Configs for self_attention or cross_attention, the order
            should be consistent with it in `operation_order`. If it is
            a dict, it would be expand to the number of attention in
            `operation_order`.
        feedforward_channels (int): The hidden dimension for FFNs.
        ffn_dropout (float): Probability of an element to be zeroed
            in ffn. Default 0.0.
        operation_order (tuple[str]): The execution order of operation
            in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm').
            Default:None
        act_cfg (dict): The activation config for FFNs. Default: `LN`
        norm_cfg (dict): Config dict for normalization layer.
            Default: `LN`.
        ffn_num_fcs (int): The number of fully-connected layers in FFNs.
            Default:2.
    """

    def __init__(self,
                 attn_cfgs,
                 feedforward_channels,
                 ffn_dropout=0.0,
                 operation_order=None,
                 act_cfg=dict(type='ReLU', inplace=True),
                 norm_cfg=dict(type='LN'),
                 ffn_num_fcs=2,
                 **kwargs):
        super(DetrTransformerDecoderLayer, self).__init__(
            attn_cfgs=attn_cfgs,
            feedforward_channels=feedforward_channels,
            ffn_dropout=ffn_dropout,
            operation_order=operation_order,
            act_cfg=act_cfg,
            norm_cfg=norm_cfg,
            ffn_num_fcs=ffn_num_fcs,
            **kwargs)
        assert len(operation_order) == 6
        assert set(operation_order) == set(
            ['self_attn', 'norm', 'cross_attn', 'ffn'])