co_atss_head.py 6.41 KB
Newer Older
dengjb's avatar
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from typing import List

import torch
from torch import Tensor

from mmdet.models.dense_heads import ATSSHead
from mmdet.models.utils import images_to_levels, multi_apply
from mmdet.registry import MODELS
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean


@MODELS.register_module()
class CoATSSHead(ATSSHead):

    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            centernesses: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            centernesses (list[Tensor]): Centerness for each scale
                level with shape (N, num_anchors * 1, H, W)
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        device = cls_scores[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)

        (anchor_list, labels_list, label_weights_list, bbox_targets_list,
         bbox_weights_list, avg_factor, ori_anchors, ori_labels,
         ori_bbox_targets) = cls_reg_targets

        avg_factor = reduce_mean(
            torch.tensor(avg_factor, dtype=torch.float, device=device)).item()

        losses_cls, losses_bbox, loss_centerness, \
            bbox_avg_factor = multi_apply(
                self.loss_by_feat_single,
                anchor_list,
                cls_scores,
                bbox_preds,
                centernesses,
                labels_list,
                label_weights_list,
                bbox_targets_list,
                avg_factor=avg_factor)

        bbox_avg_factor = sum(bbox_avg_factor)
        bbox_avg_factor = reduce_mean(bbox_avg_factor).clamp_(min=1).item()
        losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox))

        # diff
        pos_coords = (ori_anchors, ori_labels, ori_bbox_targets, 'atss')
        return dict(
            loss_cls=losses_cls,
            loss_bbox=losses_bbox,
            loss_centerness=loss_centerness,
            pos_coords=pos_coords)

    def get_targets(self,
                    anchor_list: List[List[Tensor]],
                    valid_flag_list: List[List[Tensor]],
                    batch_gt_instances: InstanceList,
                    batch_img_metas: List[dict],
                    batch_gt_instances_ignore: OptInstanceList = None,
                    unmap_outputs: bool = True) -> tuple:
        """Get targets for ATSS head.

        This method is almost the same as `AnchorHead.get_targets()`. Besides
        returning the targets as the parent method does, it also returns the
        anchors as the first element of the returned tuple.
        """
        num_imgs = len(batch_img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        num_level_anchors_list = [num_level_anchors] * num_imgs

        # concat all level anchors and flags to a single tensor
        for i in range(num_imgs):
            assert len(anchor_list[i]) == len(valid_flag_list[i])
            anchor_list[i] = torch.cat(anchor_list[i])
            valid_flag_list[i] = torch.cat(valid_flag_list[i])

        # compute targets for each image
        if batch_gt_instances_ignore is None:
            batch_gt_instances_ignore = [None] * num_imgs
        (all_anchors, all_labels, all_label_weights, all_bbox_targets,
         all_bbox_weights, pos_inds_list, neg_inds_list,
         sampling_results_list) = multi_apply(
             self._get_targets_single,
             anchor_list,
             valid_flag_list,
             num_level_anchors_list,
             batch_gt_instances,
             batch_img_metas,
             batch_gt_instances_ignore,
             unmap_outputs=unmap_outputs)
        # Get `avg_factor` of all images, which calculate in `SamplingResult`.
        # When using sampling method, avg_factor is usually the sum of
        # positive and negative priors. When using `PseudoSampler`,
        # `avg_factor` is usually equal to the number of positive priors.
        avg_factor = sum(
            [results.avg_factor for results in sampling_results_list])
        # split targets to a list w.r.t. multiple levels
        anchors_list = images_to_levels(all_anchors, num_level_anchors)
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)

        # diff
        ori_anchors = all_anchors
        ori_labels = all_labels
        ori_bbox_targets = all_bbox_targets
        return (anchors_list, labels_list, label_weights_list,
                bbox_targets_list, bbox_weights_list, avg_factor, ori_anchors,
                ori_labels, ori_bbox_targets)