"official/projects/roformer/train.py" did not exist on "33a4c207feb4a929517744dce4e54317b3f2dc26"
finetune_XrayGLM.py 8.11 KB
Newer Older
MPU王荣胜's avatar
MPU王荣胜 committed
1
2
3
4
5
6
7
8
import os
import torch
import argparse

from sat import mpu, get_args, get_tokenizer
from sat.training.deepspeed_training import training_main
from model import VisualGLMModel
from sat.model.finetune import PTuningV2Mixin
MPU王荣胜's avatar
MPU王荣胜 committed
9
from lora_mixin import LoraMixin
MPU王荣胜's avatar
MPU王荣胜 committed
10
11
12
13
14
15
16
17
18
19

class FineTuneVisualGLMModel(VisualGLMModel):
    def __init__(self, args, transformer=None, parallel_output=True, **kw_args):
        super().__init__(args, transformer=transformer, parallel_output=parallel_output, **kw_args)
        if args.use_ptuning:
            self.add_mixin("ptuning", PTuningV2Mixin(args.num_layers, args.hidden_size // args.num_attention_heads, args.num_attention_heads, args.pre_seq_len))
        if args.use_lora:
            # If you use lora on other "normal" Transformer, just use it with head_first=False (by default)
            self.add_mixin("lora", LoraMixin(args.num_layers, args.lora_rank, head_first=True, num_attention_heads=args.num_attention_heads, hidden_size_per_attention_head=args.hidden_size // args.num_attention_heads, layer_range=list(range(0, 28, 14))), reinit=True)
            # self.get_mixin("eva").model.glm_proj = replace_linear_with_lora(self.get_mixin("eva").model.glm_proj, LoraLinear, args.lora_rank)
MPU王荣胜's avatar
MPU王荣胜 committed
20
21
        elif args.use_qlora:
            self.add_mixin("lora", LoraMixin(args.num_layers, args.lora_rank, head_first=True, num_attention_heads=args.num_attention_heads, hidden_size_per_attention_head=args.hidden_size // args.num_attention_heads, layer_range=list(range(0, 28, 14)), qlora=True), reinit=True)
MPU王荣胜's avatar
MPU王荣胜 committed
22
23
24
25
26
27
28
29
30
        self.args = args
        
    @classmethod
    def add_model_specific_args(cls, parser):
        group = parser.add_argument_group('VisualGLM-finetune', 'VisualGLM finetune Configurations')
        group.add_argument('--pre_seq_len', type=int, default=8)
        group.add_argument('--lora_rank', type=int, default=10)
        group.add_argument('--use_ptuning', action="store_true")
        group.add_argument('--use_lora', action="store_true")
MPU王荣胜's avatar
MPU王荣胜 committed
31
        group.add_argument('--use_qlora', action="store_true")
MPU王荣胜's avatar
MPU王荣胜 committed
32
33
34
35
36
37
        return super().add_model_specific_args(parser)

    def disable_untrainable_params(self):
        enable = []
        if self.args.use_ptuning:
            enable.extend(['ptuning'])
MPU王荣胜's avatar
MPU王荣胜 committed
38
        if self.args.use_lora or self.args.use_qlora:
MPU王荣胜's avatar
MPU王荣胜 committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            enable.extend(['matrix_A', 'matrix_B'])
        for n, p in self.named_parameters():
            flag = False
            for e in enable:
                if e.lower() in n.lower():
                    flag = True
                    break
            if not flag:
                p.requires_grad_(False)
            else:
                print(n)


def get_batch(data_iterator, args, timers):
    # Items and their type.
    keys = ['input_ids', 'labels']
    datatype = torch.int64

    # Broadcast data.
    timers('data loader').start()
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
    timers('data loader').stop()
    data_b = mpu.broadcast_data(keys, data, datatype)
    data_i = mpu.broadcast_data(['image'], data, torch.float32)
    # Unpack.
    tokens = data_b['input_ids'].long()
    labels = data_b['labels'].long()
    img = data_i['image']
    if args.fp16:
        img = img.half()
    
    return tokens, labels, img, data['pre_image']


from torch.nn import CrossEntropyLoss

def forward_step(data_iterator, model, args, timers):
    """Forward step."""

    # Get the batch.
    timers('batch generator').start()
    tokens, labels, image, pre_image = get_batch(
        data_iterator, args, timers)
    timers('batch generator').stop()

    logits = model(input_ids=tokens, image=image, pre_image=pre_image)[0]
    dtype = logits.dtype
    lm_logits = logits.to(torch.float32)

    # Shift so that tokens < n predict n
    shift_logits = lm_logits[..., :-1, :].contiguous()
    shift_labels = labels[..., 1:].contiguous()
    # Flatten the tokens
    loss_fct = CrossEntropyLoss(ignore_index=-100)
    loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

    lm_logits = lm_logits.to(dtype)
    loss = loss.to(dtype)
    return loss, {'loss': loss}


from model.blip2 import BlipImageEvalProcessor
from torch.utils.data import Dataset
import json
from PIL import Image

class FewShotDataset(Dataset):
    def __init__(self, path, processor, tokenizer, args):
        max_seq_length = args.max_source_length + args.max_target_length
        with open(path, 'r', encoding='utf-8') as f:
            data = json.load(f)
        self.images = []
        self.input_ids = []
        self.labels = []
        for item in data:
            image = processor(Image.open(item['img']).convert('RGB'))
            input0 = tokenizer.encode("<img>", add_special_tokens=False)
            input1 = [tokenizer.pad_token_id] * args.image_length
            input2 = tokenizer.encode("</img>问:"+item['prompt']+"\n答:", add_special_tokens=False)
            a_ids = sum([input0, input1, input2], [])
            b_ids = tokenizer.encode(text=item['label'], add_special_tokens=False)
            if len(a_ids) > args.max_source_length - 1:
                a_ids = a_ids[: args.max_source_length - 1]
            if len(b_ids) > args.max_target_length - 2:
                b_ids = b_ids[: args.max_target_length - 2]
            pre_image = len(input0)
            input_ids = tokenizer.build_inputs_with_special_tokens(a_ids, b_ids)

            context_length = input_ids.index(tokenizer.bos_token_id)
            mask_position = context_length - 1
            labels = [-100] * context_length + input_ids[mask_position+1:]
            
            pad_len = max_seq_length - len(input_ids)
            input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
            labels = labels + [tokenizer.pad_token_id] * pad_len
            if args.ignore_pad_token_for_loss:
                labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]
            self.images.append(image)
            self.input_ids.append(input_ids)
            self.labels.append(labels)
        self.pre_image = pre_image

    def __len__(self):
        return len(self.images)

    def __getitem__(self, idx):
        return {
            "image": self.images[idx],
            "input_ids": self.input_ids[idx],
            "labels": self.labels[idx],
            "pre_image": self.pre_image
        }


def create_dataset_function(path, args):
    tokenizer = get_tokenizer(args)
    image_processor = BlipImageEvalProcessor(224)

    dataset = FewShotDataset(path, image_processor, tokenizer, args)
    return dataset


if __name__ == '__main__':
    py_parser = argparse.ArgumentParser(add_help=False)
    py_parser.add_argument('--max_source_length', type=int)
    py_parser.add_argument('--max_target_length', type=int)
    py_parser.add_argument('--ignore_pad_token_for_loss', type=bool, default=True)
    # py_parser.add_argument('--old_checkpoint', action="store_true")
    py_parser.add_argument('--source_prefix', type=str, default="")
    py_parser = FineTuneVisualGLMModel.add_model_specific_args(py_parser)
    known, args_list = py_parser.parse_known_args()
    args = get_args(args_list)
    args = argparse.Namespace(**vars(args), **vars(known))
MPU王荣胜's avatar
MPU王荣胜 committed
175
    args.device = 'cpu'
MPU王荣胜's avatar
MPU王荣胜 committed
176
177
178

    model_type = 'visualglm-6b'
    model, args = FineTuneVisualGLMModel.from_pretrained(model_type, args)
MPU王荣胜's avatar
MPU王荣胜 committed
179
180
    if torch.cuda.is_available():
        model = model.to('cuda')
MPU王荣胜's avatar
MPU王荣胜 committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    tokenizer = get_tokenizer(args)
    label_pad_token_id = -100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    def data_collator(examples):
        for example in examples:
            example['input_ids'] = torch.tensor(example['input_ids'], dtype=torch.long)
            example['labels'] = torch.tensor(example['labels'], dtype=torch.long)
        ret = {
            'input_ids': torch.stack([example['input_ids'] for example in examples]),
            'labels': torch.stack([example['labels'] for example in examples]),
            'image': torch.stack([example['image'] for example in examples]),
            'pre_image': example['pre_image']
        }
        return ret
    training_main(args, model_cls=model, forward_step_function=forward_step, create_dataset_function=create_dataset_function, collate_fn=data_collator)