README.md 3.41 KB
Newer Older
sugon_cxj's avatar
sugon_cxj committed
1
# chineseocr_lite_onnx
chenxj's avatar
chenxj committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
## 论文
chineseocr_lite通过det、rec、cls三个模型分别实现字符检测、字符识别和字符方向分类的应用

det模型主要用DB算法,参考论文如下:

https://arxiv.org/pdf/1911.08947.pdf

rec模型主要用crnn算法,参考论文如下:

https://arxiv.org/pdf/1507.05717.pdf

cls模型用resnet实现通用分类,参考论文如下:

https://arxiv.org/pdf/1512.03385.pdf
## 模型结构
det:

![image](https://developer.hpccube.com/codes/modelzoo/chineseocr_lite_onnx/-/raw/main/configs/dbnet-arc.png)

rec:

![image](https://developer.hpccube.com/codes/modelzoo/chineseocr_lite_onnx/-/raw/main/configs/crnn-arc.png)

cls:

![image](https://developer.hpccube.com/codes/modelzoo/chineseocr_lite_onnx/-/raw/main/configs/resnet-arc.png)
## 算法原理
det->cls->rec->text
## 数据集
推荐使用icdar2015数据集[icdar2015](https://rrc.cvc.uab.es/?ch=4&com=downloads)

检测模型训练集文件结构
```
/PaddleOCR/train_data/icdar2015/text_localization/
  └─ icdar_c4_train_imgs/         Training data of icdar dataset
  └─ ch4_test_images/             Testing data of icdar dataset
  └─ train_icdar2015_label.txt    Training annotation of icdar dataset
  └─ test_icdar2015_label.txt     Test annotation of icdar dataset
```
识别模型训练集文件结构
```
|-train_data
  |-rec
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
## 环境配置
[光源](https://www.sourcefind.cn/#/service-details)可拉取训练以及推理的docker镜像,在[光合开发者社区](https://cancon.hpccube.com:65024/4/main/)可下载paddle安装包用于模型测试。chineseocr_lite_onnx推荐的镜像如下:
```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```
获取最新的dtk并安装依赖
```
cd /opt
wget http://10.0.50.210:8000/jenkins/rocm/23.04.1/centos7/DTK-23.04.1-rc4-centos7-x86_64.tar.gz
tar -zxvf DTK-23.04.1-rc4-centos7-x86_64.tar.gz
source /opt/dtk-23.04.1/env.sh
cd chineseocr_lite_onnx
pip3 install -r requirements.txt
```
## 测试
检测模型
```
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/eval.py -c configs/det_mv3_db.yml -o Global.pretrained_model=./models/dbnet.onnx
```
识别模型
```
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/eval.py -c configs/ch_PP-OCRv3_rec.yml -o Global.pretrained_model=./models/crnn_lite_lstm.onnx
```
## 推理
```
python3 main.py --img_dir="./images/" --det_model_dir="./models/dbnet.onnx" --rec_model_dir="./models/crnn_lite_lstm.onnx" --cls_model_dir="./models/angle_net.onnx" --use_angle_cls=1 --warmup=1
```
## result
![image](https://developer.hpccube.com/codes/modelzoo/chineseocr_lite_onnx/-/raw/main/dbnet/test.jpg)
### 性能和准确率数据

检测模型测试
| Model | Precision | Recall |
| :------: | :------: |:------: |
| det | 0.6969 | 0.2291  |

识别模型测试
| Model | Acc | 
| :------: | :------: |
| rec | 0.1160 | 
## 应用场景
### 算法类别
ocr
### 热点应用行业
工业制造、金融、交通、教育、医疗
## 源码仓库及问题反馈
https://developer.hpccube.com/codes/modelzoo/chineseocr_lite_onnx
## 参考
* [chineseocr_lite](https://github.com/DayBreak-u/chineseocr_lite)
sugon_cxj's avatar
sugon_cxj committed
108