decode.py 6.68 KB
Newer Older
chenxj's avatar
chenxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon


class SegDetectorRepresenter:
    def __init__(self, thresh=0.3, box_thresh=0.5, max_candidates=1000, unclip_ratio=2.0):
        self.min_size = 3
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
    
    def __call__(self, pred, height, width, resize_h, resize_w):
        """
        batch: (image, polygons, ignore_tags
        batch: a dict produced by dataloaders.
            image: tensor of shape (N, C, H, W).
            polygons: tensor of shape (N, K, 4, 2), the polygons of objective regions.
            ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not.
            shape: the original shape of images.
            filename: the original filenames of images.
        pred:
            binary: text region segmentation map, with shape (N, H, W)
            thresh: [if exists] thresh hold prediction with shape (N, H, W)
            thresh_binary: [if exists] binarized with threshhold, (N, H, W)
        """

        pred = pred[0, :, :]
        segmentation = self.binarize(pred)
        
        # boxes, scores = self.boxes_from_bitmap(pred, segmentation, width, height)
        boxes, scores = self.boxes_from_bitmap_section(pred, segmentation, width, height, resize_h, resize_w)
        
        return boxes, scores
    
    def binarize(self, pred):
        return pred > self.thresh
    
    def boxes_from_bitmap(self, pred, bitmap, dest_width, dest_height):
        """
        _bitmap: single map with shape (H, W),
            whose values are binarized as {0, 1}
        """
        
        assert len(bitmap.shape) == 2
        # bitmap = _bitmap.cpu().numpy()  # The first channel
        # pred = pred.cpu().detach().numpy()
        height, width = bitmap.shape
        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        num_contours = min(len(contours), self.max_candidates)
        boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
        scores = np.zeros((num_contours,), dtype=np.float32)
        rects = []
        for index in range(num_contours):
            contour = contours[index].squeeze(1)
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            score = self.box_score_fast(pred, contour)
            if self.box_thresh > score:
                continue
            box = self.unclip(points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)
            if not isinstance(dest_width, int):
                dest_width = dest_width.item()
                dest_height = dest_height.item()
            
            box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes[index, :, :] = box.astype(np.int16)
            scores[index] = score
        return boxes, scores
    
    def boxes_from_bitmap_section(self, pred, _bitmap, dest_width, dest_height, resize_h, resize_w):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape
        offset_h = int((height - resize_h) / 2)
        offset_w = int((width - resize_w) / 2)

        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        num_contours = min(len(contours), self.max_candidates)
        boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
        scores = np.zeros((num_contours,), dtype=np.float32)
        rects = []
        for index in range(num_contours):
            contour = contours[index].squeeze(1)
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            score = self.box_score_fast(pred, contour)
            if self.box_thresh > score:
                continue
            box = self.unclip(points, unclip_ratio=self.unclip_ratio).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)
            if not isinstance(dest_width, int):
                dest_width = dest_width.item()
                dest_height = dest_height.item()

            box[:, 0] = np.clip(
                np.round((box[:, 0] - offset_w) / resize_w * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round((box[:, 1] - offset_h) / resize_h * dest_height), 0, dest_height)
            boxes[index, :, :] = box.astype(np.int16)
            scores[index] = score
        return boxes, scores

    
    def unclip(self, box, unclip_ratio=1.5):
        poly = Polygon(box)
        
        distance = poly.area * unclip_ratio / (poly.length  )
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded
    
    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
        
        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2
        
        box = [points[index_1], points[index_2], points[index_3], points[index_4]]
        return box, min(bounding_box[1])
    
    def box_score_fast(self, bitmap, _box):
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
        
        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]