privateGPT.py 4 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python3
from dotenv import load_dotenv
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.llms import GPT4All, LlamaCpp
import os
import argparse
import time

load_dotenv()

embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME")
persist_directory = os.environ.get('PERSIST_DIRECTORY')

model_type = os.environ.get('MODEL_TYPE')
model_path = os.environ.get('MODEL_PATH')
model_n_ctx = os.environ.get('MODEL_N_CTX')
model_n_batch = int(os.environ.get('MODEL_N_BATCH', 8))
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS', 4))

from constants import CHROMA_SETTINGS

def main():
    # Parse the command line arguments
    args = parse_arguments()
    embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
    db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
    retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
    # activate/deactivate the streaming StdOut callback for LLMs
    callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
    # Prepare the LLM
    match model_type:
        case "LlamaCpp":
            llm = LlamaCpp(model_path=model_path, max_tokens=model_n_ctx, n_ctx=model_n_ctx,
                           n_gpu_layers=1, n_batch=model_n_batch, callbacks=callbacks, n_threads=8, verbose=False)
        case "GPT4All":
            llm = GPT4All(model=model_path, max_tokens=model_n_ctx, backend='gptj', n_batch=model_n_batch, callbacks=callbacks, verbose=False)
        case _default:
            # raise exception if model_type is not supported
            raise Exception(f"Model type {model_type} is not supported. Please choose one of the following: LlamaCpp, GPT4All")

    # The followings are specifically designed for Chinese-Alpaca-2
    # For detailed usage: https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/privategpt_en
    alpaca2_prompt_template = (
        "[INST] <<SYS>>\n"
        "You are a helpful assistant. 你是一个乐于助人的助手。\n"
        "<</SYS>>\n\n"
        "{context}\n\n{question} [/INST]"
    )
    from langchain import PromptTemplate
    input_with_prompt = PromptTemplate(template=alpaca2_prompt_template, input_variables=["context", "question"])

    qa = RetrievalQA.from_chain_type(
        llm=llm, chain_type="stuff", retriever=retriever,
        return_source_documents= not args.hide_source,
        chain_type_kwargs={"prompt": input_with_prompt})

    # Interactive questions and answers
    while True:
        query = input("\nEnter a query: ")
        if query == "exit":
            break
        if query.strip() == "":
            continue

        # Get the answer from the chain
        start = time.time()
        res = qa(query)
        answer, docs = res['result'], [] if args.hide_source else res['source_documents']
        end = time.time()

        # Print the result
        print("\n\n> Question:")
        print(query)
        print(f"\n> Answer (took {round(end - start, 2)} s.):")
        print(answer)

        # Print the relevant sources used for the answer
        for document in docs:
            print("\n> " + document.metadata["source"] + ":")
            print(document.page_content)

def parse_arguments():
    parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
                                                 'using the power of LLMs.')
    parser.add_argument("--hide-source", "-S", action='store_true',
                        help='Use this flag to disable printing of source documents used for answers.')

    parser.add_argument("--mute-stream", "-M",
                        action='store_true',
                        help='Use this flag to disable the streaming StdOut callback for LLMs.')

    return parser.parse_args()


if __name__ == "__main__":
    main()