openai_api_protocol_vllm.py 5.04 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import time
from typing import Dict, List, Literal, Optional, Union

from pydantic import BaseModel, Field

from vllm.utils import random_uuid


class ErrorResponse(BaseModel):
    object: str = "error"
    message: str
    type: str
    param: Optional[str] = None
    code: Optional[str] = None


class ModelPermission(BaseModel):
    id: str = Field(default_factory=lambda: f"modelperm-{random_uuid()}")
    object: str = "model_permission"
    created: int = Field(default_factory=lambda: int(time.time()))
    allow_create_engine: bool = False
    allow_sampling: bool = True
    allow_logprobs: bool = True
    allow_search_indices: bool = False
    allow_view: bool = True
    allow_fine_tuning: bool = False
    organization: str = "*"
    group: Optional[str] = None
    is_blocking: str = False


class ModelCard(BaseModel):
    id: str
    object: str = "model"
    created: int = Field(default_factory=lambda: int(time.time()))
    owned_by: str = "vllm"
    root: Optional[str] = None
    parent: Optional[str] = None
    permission: List[ModelPermission] = Field(default_factory=list)


class ModelList(BaseModel):
    object: str = "list"
    data: List[ModelCard] = Field(default_factory=list)


class UsageInfo(BaseModel):
    prompt_tokens: int = 0
    total_tokens: int = 0
    completion_tokens: Optional[int] = 0


class ChatCompletionRequest(BaseModel):
    model: str
    messages: Union[str, List[Dict[str, str]]]
    temperature: Optional[float] = 0.2
    top_p: Optional[float] = 0.9
    n: Optional[int] = 1
    max_tokens: Optional[int] = 512
    stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
    stream: Optional[bool] = False
    presence_penalty: Optional[float] = 1.0
    frequency_penalty: Optional[float] = 0.0
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None
    # Additional parameters supported by vLLM
    best_of: Optional[int] = None
    top_k: Optional[int] = 40
    ignore_eos: Optional[bool] = False
    use_beam_search: Optional[bool] = False


class CompletionRequest(BaseModel):
    model: str
    prompt: Union[str, List[str]]
    suffix: Optional[str] = None
    max_tokens: Optional[int] = 512
    temperature: Optional[float] = 0.2
    top_p: Optional[float] = 0.9
    n: Optional[int] = 1
    stream: Optional[bool] = False
    logprobs: Optional[int] = None
    echo: Optional[bool] = False
    stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
    presence_penalty: Optional[float] = 1.0
    frequency_penalty: Optional[float] = 0.0
    best_of: Optional[int] = None
    logit_bias: Optional[Dict[str, float]] = None
    user: Optional[str] = None
    # Additional parameters supported by vLLM
    top_k: Optional[int] = 40
    ignore_eos: Optional[bool] = False
    use_beam_search: Optional[bool] = False


class LogProbs(BaseModel):
    text_offset: List[int] = Field(default_factory=list)
    token_logprobs: List[Optional[float]] = Field(default_factory=list)
    tokens: List[str] = Field(default_factory=list)
    top_logprobs: List[Optional[Dict[str,
                                     float]]] = Field(default_factory=list)


class CompletionResponseChoice(BaseModel):
    index: int
    text: str
    logprobs: Optional[LogProbs] = None
    finish_reason: Optional[Literal["stop", "length"]] = None


class CompletionResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
    object: str = "text_completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[CompletionResponseChoice]
    usage: UsageInfo


class CompletionResponseStreamChoice(BaseModel):
    index: int
    text: str
    logprobs: Optional[LogProbs] = None
    finish_reason: Optional[Literal["stop", "length"]] = None


class CompletionStreamResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"cmpl-{random_uuid()}")
    object: str = "text_completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[CompletionResponseStreamChoice]


class ChatMessage(BaseModel):
    role: str
    content: str


class ChatCompletionResponseChoice(BaseModel):
    index: int
    message: ChatMessage
    finish_reason: Optional[Literal["stop", "length"]] = None


class ChatCompletionResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
    object: str = "chat.completion"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[ChatCompletionResponseChoice]
    usage: UsageInfo


class DeltaMessage(BaseModel):
    role: Optional[str] = None
    content: Optional[str] = None


class ChatCompletionResponseStreamChoice(BaseModel):
    index: int
    delta: DeltaMessage
    finish_reason: Optional[Literal["stop", "length"]] = None


class ChatCompletionStreamResponse(BaseModel):
    id: str = Field(default_factory=lambda: f"chatcmpl-{random_uuid()}")
    object: str = "chat.completion.chunk"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[ChatCompletionResponseStreamChoice]