inference_hf.py 21 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import argparse
import json, os

DEFAULT_SYSTEM_PROMPT = """You are a helpful assistant. 你是一个乐于助人的助手。"""

TEMPLATE = (
    "[INST] <<SYS>>\n"
    "{system_prompt}\n"
    "<</SYS>>\n\n"
    "{instruction} [/INST]"
)

parser = argparse.ArgumentParser()
parser.add_argument('--base_model', default=None, type=str, required=True)
parser.add_argument('--lora_model', default=None, type=str, help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path', default=None, type=str)
parser.add_argument('--data_file', default=None, type=str, help="A file that contains instructions (one instruction per line)")
parser.add_argument('--with_prompt', action='store_true', help="wrap the input with the prompt automatically")
parser.add_argument('--interactive', action='store_true', help="run in the instruction mode (single-turn)")
parser.add_argument('--predictions_file', default='./predictions.json', type=str)
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
parser.add_argument('--alpha', type=str, default="1.0", help="The scaling factor of NTK method, can be a float or 'auto'. ")
parser.add_argument('--load_in_8bit', action='store_true', help="Load the LLM in the 8bit mode")
parser.add_argument('--load_in_4bit', action='store_true', help="Load the LLM in the 4bit mode")
parser.add_argument("--use_vllm", action='store_true', help="Use vLLM as back-end LLM service.")
parser.add_argument('--system_prompt', type=str, default=DEFAULT_SYSTEM_PROMPT, help="The system prompt of the prompt template.")
parser.add_argument('--negative_prompt', type=str, default=None, help="Negative prompt in CFG sampling.")
parser.add_argument('--guidance_scale', type=float, default=1.0, help="The guidance scale for CFG sampling. CFG is enabled by setting `guidance_scale > 1`.")
parser.add_argument('--speculative_sampling', action='store_true', help="Use speculative sampling to speed up inference.")
parser.add_argument('--draft_k', type=int, default=-1, help="Number of new tokens the draft model generates each times. Should be a positive integer. Using adaptive number K if `draft_k <= 0`.")
parser.add_argument('--draft_base_model', default=None, type=str, help="Draft base model used in speculative sampling.")
parser.add_argument('--draft_lora_model', default=None, type=str, help="If None, perform inference on the draft base model")
parser.add_argument('--draft_model_load_in_8bit', action='store_true', help="Load the draft model in the 8bit mode")
parser.add_argument('--draft_model_load_in_4bit', action='store_true', help="Load the draft model in the 4bit mode")
parser.add_argument('--use_flash_attention_2', action='store_true', help="Use flash attention to replace the LLaMA attention")
parser.add_argument('--use_ntk', action='store_true', help="Use dynamic-ntk to extend context window")
args = parser.parse_args()

if args.guidance_scale > 1:
    try:
        from transformers.generation import UnbatchedClassifierFreeGuidanceLogitsProcessor
    except ImportError:
        raise ImportError("Please install the latest transformers (commit equal or later than d533465) to enable CFG sampling.")

if args.use_vllm:
    if args.lora_model is not None:
        raise ValueError("vLLM currently does not support LoRA, please merge the LoRA weights to the base model.")
    if args.load_in_8bit or args.load_in_4bit:
        raise ValueError("vLLM currently does not support quantization, please use fp16 (default) or unuse --use_vllm.")
    if args.only_cpu:
        raise ValueError("vLLM requires GPUs with compute capability not less than 7.0. If you want to run only on CPU, please unuse --use_vllm.")
    if args.guidance_scale > 1:
        raise ValueError("guidance_scale > 1, but vLLM does not support CFG sampling. Please unset guidance_scale. ")
    if args.speculative_sampling:
        raise ValueError("speculative_sampling is set, but vLLM does not support speculative sampling. Please unset speculative_sampling. ")
if args.load_in_8bit and args.load_in_4bit:
    raise ValueError("Only one quantization method can be chosen for inference. Please check your arguments")
if args.only_cpu is True:
    args.gpus = ""
    if args.load_in_8bit or args.load_in_4bit:
        raise ValueError("Quantization is unavailable on CPU.")

os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
import torch
from transformers import AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer
from transformers import GenerationConfig
from transformers import BitsAndBytesConfig
from peft import  PeftModel
if args.use_vllm:
    from vllm import LLM, SamplingParams

import sys
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
if not args.only_cpu:
    if args.use_flash_attention_2:
        from flash_attn_patch_for_inference import replace_llama_attn_with_flash_attn
        replace_llama_attn_with_flash_attn()
    elif not args.use_vllm:
        from attn_and_long_ctx_patches import apply_attention_patch
        apply_attention_patch(use_memory_efficient_attention=True)
if args.use_ntk:
    from attn_and_long_ctx_patches import apply_ntk_scaling_patch
    apply_ntk_scaling_patch(args.alpha)
if args.speculative_sampling:
    if args.draft_base_model == None:
        raise ValueError("Speculative sampling requires a draft model. Please specify the draft model.")
    if args.draft_model_load_in_8bit and args.draft_model_load_in_4bit:
        raise ValueError("Only one quantization method can be chosen for inference. Please check your arguments")
    from speculative_sample import speculative_sample

if args.use_vllm:
    generation_config = dict(
        temperature=0.2,
        top_k=40,
        top_p=0.9,
        max_tokens=400,
        presence_penalty=1.0,
    )
else:
    generation_config = GenerationConfig(
        temperature=0.2,
        top_k=40,
        top_p=0.9,
        do_sample=True,
        num_beams=1,
        repetition_penalty=1.1,
        max_new_tokens=400
    )

sample_data = ["为什么要减少污染,保护环境?"]

def generate_prompt(instruction, system_prompt=DEFAULT_SYSTEM_PROMPT):
    return TEMPLATE.format_map({'instruction': instruction,'system_prompt': system_prompt})

if __name__ == '__main__':
    load_type = torch.float16
    if torch.cuda.is_available():
        device = torch.device(0)
    else:
        device = torch.device('cpu')
    if args.tokenizer_path is None:
        args.tokenizer_path = args.lora_model
        if args.lora_model is None:
            args.tokenizer_path = args.base_model

    if args.use_vllm:
        model = LLM(model=args.base_model,
            tokenizer=args.tokenizer_path,
            tokenizer_mode='slow',
            tensor_parallel_size=len(args.gpus.split(',')),
            trust_remote_code=True)
        tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path, legacy=True)
    else:
        tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path, legacy=True)
        if args.load_in_4bit or args.load_in_8bit:
            quantization_config = BitsAndBytesConfig(
                load_in_4bit=args.load_in_4bit,
                load_in_8bit=args.load_in_8bit,
                bnb_4bit_compute_dtype=load_type,
            )

        base_model = AutoModelForCausalLM.from_pretrained(
            args.base_model,
            torch_dtype=load_type,
            low_cpu_mem_usage=True,
            device_map='auto',
            load_in_4bit=args.load_in_4bit,
            load_in_8bit=args.load_in_8bit,
            quantization_config=quantization_config if (args.load_in_4bit or args.load_in_8bit) else None,
            trust_remote_code=True
        )

        if args.speculative_sampling:
            if args.load_in_4bit or args.load_in_8bit:
                draft_quantization_config = BitsAndBytesConfig(
                    load_in_4bit=args.draft_model_load_in_4bit,
                    load_in_8bit=args.draft_model_load_in_8bit,
                    bnb_4bit_compute_dtype=load_type,
                )
            draft_base_model = LlamaForCausalLM.from_pretrained(
                args.draft_base_model,
                torch_dtype=load_type,
                low_cpu_mem_usage=True,
                device_map='auto',
                load_in_4bit=args.draft_model_load_in_4bit,
                load_in_8bit=args.draft_model_load_in_8bit,
                quantization_config=draft_quantization_config if (args.draft_model_load_in_4bit or args.draft_model_load_in_8bit) else None
            )

        model_vocab_size = base_model.get_input_embeddings().weight.size(0)
        tokenizer_vocab_size = len(tokenizer)
        print(f"Vocab of the base model: {model_vocab_size}")
        print(f"Vocab of the tokenizer: {tokenizer_vocab_size}")
        if model_vocab_size!=tokenizer_vocab_size:
            print("Resize model embeddings to fit tokenizer")
            base_model.resize_token_embeddings(tokenizer_vocab_size)
        if args.speculative_sampling:
            draft_model_vocab_size = draft_base_model.get_input_embeddings().weight.size(0)
            print(f"Vocab of the draft base model: {draft_model_vocab_size}")
            if draft_model_vocab_size!=tokenizer_vocab_size:
                print("Resize draft model embeddings to fit tokenizer")
                draft_base_model.resize_token_embeddings(tokenizer_vocab_size)
        if args.lora_model is not None:
            print("loading peft model")
            model = PeftModel.from_pretrained(base_model, args.lora_model,torch_dtype=load_type,device_map='auto',).half()
        else:
            model = base_model
        if args.speculative_sampling:
            if args.draft_lora_model is not None:
                print("loading peft draft model")
                draft_model = PeftModel.from_pretrained(draft_base_model, args.draft_lora_model,torch_dtype=load_type,device_map='auto',).half()
            else:
                draft_model = draft_base_model

        if device==torch.device('cpu'):
            model.float()
        model.eval()
        if args.speculative_sampling:
            if device==torch.device('cpu'):
                draft_model.float()
            draft_model.eval()

    # test data
    if args.data_file is None:
        examples = sample_data
    else:
        with open(args.data_file,'r') as f:
            examples = [l.strip() for l in f.readlines()]
        print("first 10 examples:")
        for example in examples[:10]:
            print(example)

    with torch.no_grad():
        if args.interactive:
            print("Start inference with instruction mode.")

            print('='*85)
            print("+ 该模式下仅支持单轮问答,无多轮对话能力。\n"
                  "+ 如要进行多轮对话,请使用llama.cpp或本项目中的gradio_demo.py。")
            print('-'*85)
            print("+ This mode only supports single-turn QA.\n"
                  "+ If you want to experience multi-turn dialogue, please use llama.cpp or gradio_demo.py.")
            print('='*85)

            while True:
                raw_input_text = input("Input:")
                if len(raw_input_text.strip())==0:
                    break
                if args.with_prompt:
                    input_text = generate_prompt(instruction=raw_input_text, system_prompt=args.system_prompt)
                    negative_text = None if args.negative_prompt is None \
                        else generate_prompt(instruction=raw_input_text, system_prompt=args.negative_prompt)
                else:
                    input_text = raw_input_text
                    negative_text = args.negative_prompt

                if args.use_vllm:
                    output = model.generate([input_text], SamplingParams(**generation_config), use_tqdm=False)
                    response = output[0].outputs[0].text
                else:
                    inputs = tokenizer(input_text,return_tensors="pt")  #add_special_tokens=False ?
                    if args.guidance_scale ==1:
                        if not args.speculative_sampling:
                            generation_output = model.generate(
                                input_ids = inputs["input_ids"].to(device),
                                attention_mask = inputs['attention_mask'].to(device),
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id,
                                generation_config = generation_config
                            )
                        else: # enable speculative sampling
                            generation_output = speculative_sample(
                                input_ids=inputs["input_ids"].to(device),
                                target_model=model,
                                draft_model=draft_model,
                                draft_k=args.draft_k,
                                generation_config=generation_config,
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id,
                            )
                    else: # enable CFG sampling
                        if negative_text is None:
                            negative_prompt_ids = None
                            negative_prompt_attention_mask = None
                        else:
                            negative_inputs = tokenizer(negative_text,return_tensors="pt")
                            negative_prompt_ids = negative_inputs["input_ids"].to(device)
                            negative_prompt_attention_mask = negative_inputs["attention_mask"].to(device)
                        if not args.speculative_sampling:
                            generation_output = model.generate(
                                input_ids = inputs["input_ids"].to(device),
                                attention_mask = inputs['attention_mask'].to(device),
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id,
                                generation_config = generation_config,
                                guidance_scale = args.guidance_scale,
                                negative_prompt_ids = negative_prompt_ids,
                                negative_prompt_attention_mask = negative_prompt_attention_mask
                            )
                        else: # enable speculative sampling
                            generation_output = speculative_sample(
                                input_ids=inputs["input_ids"].to(device),
                                target_model=model,
                                draft_model=draft_model,
                                draft_k=args.draft_k,
                                generation_config=generation_config,
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id,
                                guidance_scale=args.guidance_scale,
                                negative_prompt_ids=negative_prompt_ids,
                                negative_prompt_attention_mask=negative_prompt_attention_mask,
                            )
                    s = generation_output[0]
                    output = tokenizer.decode(s,skip_special_tokens=True)
                    if args.with_prompt:
                        response = output.split("[/INST]")[-1].strip()
                    else:
                        response = output
                print("Response: ",response)
                print("\n")
        else:
            print("Start inference.")
            results = []
            if args.use_vllm:
                if args.with_prompt is True:
                    inputs = [generate_prompt(example, system_prompt=args.system_prompt) for example in examples]
                else:
                    inputs = examples
                outputs = model.generate(inputs, SamplingParams(**generation_config))

                for index, (example, output) in enumerate(zip(examples, outputs)):
                    response = output.outputs[0].text

                    print(f"======={index}=======")
                    print(f"Input: {example}\n")
                    print(f"Output: {response}\n")

                    results.append({"Input":example,"Output":response})

            else:
                for index, example in enumerate(examples):
                    if args.with_prompt:
                        input_text = generate_prompt(instruction=example, system_prompt=args.system_prompt)
                        negative_text = None if args.negative_prompt is None else \
                            generate_prompt(instruction=example, system_prompt=args.negative_prompt)
                    else:
                        input_text = example
                        negative_text = args.negative_prompt
                    inputs = tokenizer(input_text,return_tensors="pt")  #add_special_tokens=False ?
                    if args.guidance_scale == 1:
                        if not args.speculative_sampling:
                            generation_output = model.generate(
                                input_ids = inputs["input_ids"].to(device),
                                attention_mask = inputs['attention_mask'].to(device),
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id,
                                generation_config = generation_config
                            )
                        else: # enable speculative sampling
                            generation_output = speculative_sample(
                                input_ids=inputs["input_ids"].to(device),
                                target_model=model,
                                draft_model=draft_model,
                                draft_k=args.draft_k,
                                generation_config=generation_config,
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id,
                            )
                    else: # enable CFG sampling
                        if negative_text is None:
                            negative_prompt_ids = None
                            negative_prompt_attention_mask = None
                        else:
                            negative_inputs = tokenizer(negative_text,return_tensors="pt")
                            negative_prompt_ids = negative_inputs["input_ids"].to(device)
                            negative_prompt_attention_mask = negative_inputs["attention_mask"].to(device)
                        if not args.speculative_sampling:
                            generation_output = model.generate(
                                input_ids = inputs["input_ids"].to(device),
                                attention_mask = inputs['attention_mask'].to(device),
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id,
                                generation_config = generation_config,
                                guidance_scale = args.guidance_scale,
                                negative_prompt_ids = negative_prompt_ids,
                                negative_prompt_attention_mask = negative_prompt_attention_mask
                            )
                        else: # enable speculative sampling
                            generation_output = speculative_sample(
                                input_ids=inputs["input_ids"].to(device),
                                target_model=model,
                                draft_model=draft_model,
                                draft_k=args.draft_k,
                                generation_config=generation_config,
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id,
                                guidance_scale=args.guidance_scale,
                                negative_prompt_ids=negative_prompt_ids,
                                negative_prompt_attention_mask=negative_prompt_attention_mask,
                            )
                    s = generation_output[0]
                    output = tokenizer.decode(s,skip_special_tokens=True)
                    if args.with_prompt:
                        response = output.split("[/INST]")[1].strip()
                    else:
                        response = output
                    print(f"======={index}=======")
                    print(f"Input: {example}\n")
                    print(f"Output: {response}\n")

                    results.append({"Input":input_text,"Output":response})

            dirname = os.path.dirname(args.predictions_file)
            os.makedirs(dirname,exist_ok=True)
            with open(args.predictions_file,'w') as f:
                json.dump(results,f,ensure_ascii=False,indent=2)
            if args.use_vllm:
                with open(dirname+'/generation_config.json','w') as f:
                    json.dump(generation_config,f,ensure_ascii=False,indent=2)
            else:
                generation_config.save_pretrained('./')