eval.py 5.33 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# This code is modified from C-Eval Project: https://github.com/SJTU-LIT/ceval
import os
import argparse
import pandas as pd
import torch
import json
from llama2_evaluator import Llama_Evaluator
from glob import glob
import time
from collections import defaultdict
from categories import name_en2zh, subcategories, categories
choices = ["A", "B", "C", "D"]

category2subject = defaultdict(list)
for k,v in categories.items():
    for subject, subcat in subcategories.items():
        for c in subcat:
            if c in v:
                category2subject[k].append(subject)
category2subject_list = defaultdict(list)
for key,value in category2subject.items():
      for val in value:
          category2subject_list[val]=[val,name_en2zh[val],key]
category2subject=category2subject_list
choices = ["A", "B", "C", "D"]

def main(args, evaluator,take):

    subject_mapping = category2subject #json.load(f)
    filenames = [s.split('/')[-1] for s in glob(args.input_dir+"/test/*csv")]
    subject_list = [val_file.replace(".csv","") for val_file in filenames]
    accuracy, summary = {}, {}

    run_date=time.strftime('%Y-%m-%d_%H-%M-%S',time.localtime(time.time()))
    output_dir = args.output_dir
    save_result_dir=os.path.join(output_dir,f"take{take}")
    if not os.path.exists(save_result_dir):
        os.makedirs(save_result_dir,exist_ok=True)

    all_answers = {}
    for index,subject_name in enumerate(subject_list):
        print(f"{index/len(subject_list)} Inference starts at {run_date} on {args.model_path} with subject of {subject_name}!")
        val_file_path=os.path.join(args.input_dir+'/test',f'{subject_name}.csv')
        dev_file_path=os.path.join(args.input_dir+'/dev',f'{subject_name}.csv')

        val_df=pd.read_csv(val_file_path)
        dev_df=pd.read_csv(dev_file_path) if args.few_shot else None

        correct_ratio, answers = evaluator.eval_subject(subject_name, val_df, dev_df,
            save_result_dir=save_result_dir if args.do_save_csv else None,
            few_shot=args.few_shot,
            cot=args.cot,
            with_prompt=args.with_prompt,
            constrained_decoding=args.constrained_decoding,
            do_test=False)
        print(f"Subject: {subject_name}")
        print(f"Acc: {correct_ratio}")
        accuracy[subject_name] = correct_ratio
        summary[subject_name] = {"score":correct_ratio,
                                 "num":len(val_df),
                                 "correct":correct_ratio*len(val_df)/100}
        all_answers[subject_name] = answers

    json.dump(all_answers,open(save_result_dir+'/submission.json','w'),ensure_ascii=False,indent=4)
    print("\n\nModel:",args.model_path)
    print("Accuracy:")
    for k, v in accuracy.items():
        print(k, ": ", v)


    total_num = 0
    total_correct = 0
    summary['grouped'] = {
        "China specific": {"correct": 0.0, "num": 0},
        "STEM": {"correct": 0.0, "num": 0}, 
        "Social Science": {"correct": 0.0, "num": 0}, 
        "Humanities": {"correct": 0.0, "num": 0}, 
        "Other": {"correct": 0.0, "num": 0}
        }
    for subj, info in subject_mapping.items():
        group = info[2]
        summary['grouped'][group]["num"]   += summary[subj]['num']
        summary['grouped'][group]["correct"] += summary[subj]['correct']
    for group, info in summary['grouped'].items():
        info['score'] = info["correct"] / info["num"]
        total_num += info["num"]
        total_correct += info["correct"]
    summary['All'] = {"score": total_correct / total_num, "num": total_num, "correct": total_correct}

    json.dump(summary,open(save_result_dir+'/summary.json','w'),ensure_ascii=False,indent=2)




if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ntrain", "-k", type=int, default=5)
    parser.add_argument("--model_path", type=str)
    parser.add_argument("--cot",choices=["False","True"], default="False")
    parser.add_argument("--few_shot", choices=["False","True"], default="True")
    parser.add_argument("--with_prompt", choices=["False","True"], default="False")
    parser.add_argument("--constrained_decoding", choices=["False","True"], default="False")
    parser.add_argument("--temperature",type=float,default=0.2)
    parser.add_argument("--n_times", default=1,type=int)
    parser.add_argument("--do_save_csv", choices=["False","True"], default="False")
    parser.add_argument("--output_dir", type=str)
    parser.add_argument("--input_dir", type=str)
    parser.add_argument("--verbose", action="store_true", help="Print detailed information of each example.")

    args = parser.parse_args()

    args.cot = args.cot == "True"
    args.few_shot = args.few_shot == "True"
    args.with_prompt = args.with_prompt == "True"
    args.do_save_csv = args.do_save_csv == "True"
    args.constrained_decoding = args.constrained_decoding == "True"
    if args.constrained_decoding is True:
        args.n_times=max(args.n_times,1)
    print(args)

    device = torch.device(0)
    print(device)
    evaluator=Llama_Evaluator(
        choices=choices,
        k=args.ntrain,
        model_path=args.model_path,
        device=device,
        temperature = args.temperature,
        verbose = args.verbose
    )
    for i in range(args.n_times):
        main(args,evaluator=evaluator,take=i)