benchmark_throughput.py 25.1 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
5
6
7
8
9
"""Benchmark offline inference throughput."""
import argparse
import json
import random
import time
from typing import List, Optional, Tuple

import numpy as np
import torch
laibao's avatar
laibao committed
10
import uvloop
zhuwenwen's avatar
zhuwenwen committed
11
12
13
14
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
                          PreTrainedTokenizerBase)

laibao's avatar
laibao committed
15
16
17
18
from vllm.inputs import PromptInputs
from vllm.engine.arg_utils import DEVICE_OPTIONS, AsyncEngineArgs, EngineArgs
from vllm.entrypoints.openai.api_server import (
    build_async_engine_client_from_engine_args)
zhuwenwen's avatar
zhuwenwen committed
19
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
laibao's avatar
laibao committed
20
from vllm.utils import FlexibleArgumentParser, merge_async_iterators
zhuwenwen's avatar
zhuwenwen committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
    fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
    if fixed_output_len is not None and fixed_output_len < 4:
        raise ValueError("output_len too small")

    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [(data["conversations"][0]["value"],
                data["conversations"][1]["value"]) for data in dataset]

    # Shuffle the dataset.
    random.shuffle(dataset)

    # Filter out sequences that are too long or too short
    filtered_dataset: List[Tuple[str, int, int]] = []
    for i in range(len(dataset)):
        if len(filtered_dataset) == num_requests:
            break

        # Tokenize the prompts and completions.
        prompt = dataset[i][0]
        prompt_token_ids = tokenizer(prompt).input_ids
        completion = dataset[i][1]
        completion_token_ids = tokenizer(completion).input_ids
        prompt_len = len(prompt_token_ids)
        output_len = len(completion_token_ids
                         ) if fixed_output_len is None else fixed_output_len
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    return filtered_dataset


def run_vllm(
    warmup_requests: List[Tuple[str, int, int]],
    requests: List[Tuple[str, int, int]],
    model: str,
    tokenizer: str,
    quantization: Optional[str],
    tensor_parallel_size: int,
    seed: int,
    n: int,
    use_beam_search: bool,
    trust_remote_code: bool,
    dtype: str,
    max_model_len: Optional[int],
    enforce_eager: bool,
    kv_cache_dtype: str,
    quantization_param_path: Optional[str],
    device: str,
    enable_prefix_caching: bool,
    enable_chunked_prefill: bool,
    max_num_batched_tokens: int,
    distributed_executor_backend: Optional[str],
    gpu_memory_utilization: float = 0.9,
laibao's avatar
laibao committed
91
92
    num_scheduler_steps: int = 1,
    use_v2_block_manager: bool = False,
zhuwenwen's avatar
zhuwenwen committed
93
    download_dir: Optional[str] = None,
laibao's avatar
laibao committed
94
95
96
    load_format: str = EngineArgs.load_format,
    disable_async_output_proc: bool = False,
    use_new_beam_search_impl: bool = False,
zhuwenwen's avatar
zhuwenwen committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
) -> float:
    from vllm import LLM, SamplingParams
    llm = LLM(
        model=model,
        tokenizer=tokenizer,
        quantization=quantization,
        tensor_parallel_size=tensor_parallel_size,
        seed=seed,
        trust_remote_code=trust_remote_code,
        dtype=dtype,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        enforce_eager=enforce_eager,
        kv_cache_dtype=kv_cache_dtype,
        quantization_param_path=quantization_param_path,
        device=device,
        enable_prefix_caching=enable_prefix_caching,
        download_dir=download_dir,
        enable_chunked_prefill=enable_chunked_prefill,
        max_num_batched_tokens=max_num_batched_tokens,
        distributed_executor_backend=distributed_executor_backend,
laibao's avatar
laibao committed
118
119
120
121
        load_format=load_format,
        num_scheduler_steps=num_scheduler_steps,
        use_v2_block_manager=use_v2_block_manager,
        disable_async_output_proc=disable_async_output_proc,
zhuwenwen's avatar
zhuwenwen committed
122
123
124
    )

    # Add the requests to the engine.
laibao's avatar
laibao committed
125
126
    prompts: List[str] = []
    sampling_params: List[SamplingParams] = []
zhuwenwen's avatar
zhuwenwen committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    for prompt, _, output_len in requests:
        prompts.append(prompt)
        sampling_params.append(
            SamplingParams(
                n=n,
                temperature=0.0 if use_beam_search else 1.0,
                top_p=1.0,
                use_beam_search=use_beam_search,
                ignore_eos=True,
                max_tokens=output_len,
            ))

    # warmup
    warmup_prompts = []
    warmup_sampling_params = []
    for prompt, _, output_len in warmup_requests:
        warmup_prompts.append(prompt)
        warmup_sampling_params.append(
            SamplingParams(
                n=n,
                temperature=0.0 if use_beam_search else 1.0,
                top_p=1.0,
                use_beam_search=use_beam_search,
                ignore_eos=True,
                max_tokens=output_len,
            ))
        
    print("Warming up...")
    for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
        llm.generate(warmup_prompts, warmup_sampling_params, use_tqdm=True)
    
    # dummy_prompt_token_ids = np.random.randint(10000,
    #                                            size=(args.num_prompts,
    #                                                  args.input_len))
laibao's avatar
laibao committed
161
    # dummy_inputs: List[PromptInputs] = [{
zhuwenwen's avatar
zhuwenwen committed
162
163
164
165
166
167
168
169
170
171
172
    #     "prompt_token_ids": batch
    # } for batch in dummy_prompt_token_ids.tolist()]

    # def run_to_completion():
    #     llm.generate(dummy_inputs,
    #                     sampling_params=sampling_params,
    #                     use_tqdm=False)

    # print("Warming up...")
    # for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
    #     run_to_completion()
laibao's avatar
laibao committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    if not use_new_beam_search_impl:
        start = time.perf_counter()
        llm.generate(prompts, sampling_params, use_tqdm=True)
        end = time.perf_counter()
    else:
        assert use_beam_search
        prompts = [prompt for prompt, _, _ in requests]
        # output_len should be the same for all requests.
        output_len = requests[0][2]
        for prompt, input_len, _output_len in requests:
            assert _output_len == output_len
        start = time.perf_counter()
        llm.beam_search(prompts,
                        beam_width=n,
                        max_tokens=output_len,
                        ignore_eos=True)
        end = time.perf_counter()
zhuwenwen's avatar
zhuwenwen committed
191
192
193
    return end - start


laibao's avatar
laibao committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
async def run_vllm_async(
    requests: List[Tuple[str, int, int]],
    model: str,
    tokenizer: str,
    quantization: Optional[str],
    tensor_parallel_size: int,
    seed: int,
    n: int,
    use_beam_search: bool,
    trust_remote_code: bool,
    dtype: str,
    max_model_len: Optional[int],
    enforce_eager: bool,
    kv_cache_dtype: str,
    quantization_param_path: Optional[str],
    device: str,
    enable_prefix_caching: bool,
    enable_chunked_prefill: bool,
    max_num_batched_tokens: int,
    distributed_executor_backend: Optional[str],
    gpu_memory_utilization: float = 0.9,
    num_scheduler_steps: int = 1,
    use_v2_block_manager: bool = False,
    download_dir: Optional[str] = None,
    load_format: str = EngineArgs.load_format,
    disable_async_output_proc: bool = False,
    disable_frontend_multiprocessing: bool = False,
) -> float:
    from vllm import SamplingParams
    engine_args = AsyncEngineArgs(
        model=model,
        tokenizer=tokenizer,
        quantization=quantization,
        tensor_parallel_size=tensor_parallel_size,
        seed=seed,
        trust_remote_code=trust_remote_code,
        dtype=dtype,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        enforce_eager=enforce_eager,
        kv_cache_dtype=kv_cache_dtype,
        quantization_param_path=quantization_param_path,
        device=device,
        enable_prefix_caching=enable_prefix_caching,
        download_dir=download_dir,
        enable_chunked_prefill=enable_chunked_prefill,
        max_num_batched_tokens=max_num_batched_tokens,
        distributed_executor_backend=distributed_executor_backend,
        load_format=load_format,
        num_scheduler_steps=num_scheduler_steps,
        use_v2_block_manager=use_v2_block_manager,
        disable_async_output_proc=disable_async_output_proc,
        worker_use_ray=False,
        disable_log_requests=True,
    )

    async with build_async_engine_client_from_engine_args(
            engine_args, disable_frontend_multiprocessing) as llm:

        # Add the requests to the engine.
        prompts: List[str] = []
        sampling_params: List[SamplingParams] = []
        for prompt, _, output_len in requests:
            prompts.append(prompt)
            sampling_params.append(
                SamplingParams(
                    n=n,
                    temperature=0.0 if use_beam_search else 1.0,
                    top_p=1.0,
                    use_beam_search=use_beam_search,
                    ignore_eos=True,
                    max_tokens=output_len,
                ))

        generators = []
        start = time.perf_counter()
        for i, (prompt, sp) in enumerate(zip(prompts, sampling_params)):
            generator = llm.generate(prompt, sp, request_id=f"test{i}")
            generators.append(generator)
        all_gens = merge_async_iterators(*generators)
        async for i, res in all_gens:
            pass
        end = time.perf_counter()
        return end - start


zhuwenwen's avatar
zhuwenwen committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
def run_hf(
    requests: List[Tuple[str, int, int]],
    model: str,
    tokenizer: PreTrainedTokenizerBase,
    n: int,
    use_beam_search: bool,
    max_batch_size: int,
    trust_remote_code: bool,
) -> float:
    assert not use_beam_search
    llm = AutoModelForCausalLM.from_pretrained(
        model, torch_dtype=torch.float16, trust_remote_code=trust_remote_code)
    if llm.config.model_type == "llama":
        # To enable padding in the HF backend.
        tokenizer.pad_token = tokenizer.eos_token
    llm = llm.cuda()

    pbar = tqdm(total=len(requests))
    start = time.perf_counter()
    batch: List[str] = []
    max_prompt_len = 0
    max_output_len = 0
    for i in range(len(requests)):
        prompt, prompt_len, output_len = requests[i]
        # Add the prompt to the batch.
        batch.append(prompt)
        max_prompt_len = max(max_prompt_len, prompt_len)
        max_output_len = max(max_output_len, output_len)
        if len(batch) < max_batch_size and i != len(requests) - 1:
            # Check if we can add more requests to the batch.
            _, next_prompt_len, next_output_len = requests[i + 1]
            if (max(max_prompt_len, next_prompt_len) +
                    max(max_output_len, next_output_len)) <= 2048:
                # We can add more requests to the batch.
                continue

        # Generate the sequences.
        input_ids = tokenizer(batch, return_tensors="pt",
                              padding=True).input_ids
        llm_outputs = llm.generate(
            input_ids=input_ids.cuda(),
            do_sample=not use_beam_search,
            num_return_sequences=n,
            temperature=1.0,
            top_p=1.0,
            use_cache=True,
            max_new_tokens=max_output_len,
        )
        # Include the decoding time.
        tokenizer.batch_decode(llm_outputs, skip_special_tokens=True)
        pbar.update(len(batch))

        # Clear the batch.
        batch = []
        max_prompt_len = 0
        max_output_len = 0
    end = time.perf_counter()
    return end - start


def run_mii(
    requests: List[Tuple[str, int, int]],
    model: str,
    tensor_parallel_size: int,
    output_len: int,
) -> float:
    from mii import client, serve
    llm = serve(model, tensor_parallel=tensor_parallel_size)
    prompts = [prompt for prompt, _, _ in requests]

    start = time.perf_counter()
    llm.generate(prompts, max_new_tokens=output_len)
    end = time.perf_counter()
    client = client(model)
    client.terminate_server()
    return end - start


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)

    # Sample the requests.
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer, trust_remote_code=args.trust_remote_code)
    warmup_prompt = "hi" * 10
    warmup_requests = [(warmup_prompt, 10, 10)
                for _ in range(1)]
    if args.dataset is None:
        # Synthesize a prompt with the given input length.
        prompt = "hi" * (args.input_len - 1)
        requests = [(prompt, args.input_len, args.output_len)
                    for _ in range(args.num_prompts)]
    else:
        requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
                                   args.output_len)

    if args.backend == "vllm":
laibao's avatar
laibao committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        if args.async_engine:
            run_args = [
                requests, args.model, args.tokenizer, args.quantization,
                args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
                args.trust_remote_code, args.dtype, args.max_model_len,
                args.enforce_eager, args.kv_cache_dtype,
                args.quantization_param_path, args.device,
                args.enable_prefix_caching, args.enable_chunked_prefill,
                args.max_num_batched_tokens, args.distributed_executor_backend,
                args.gpu_memory_utilization, args.num_scheduler_steps,
                args.use_v2_block_manager, args.download_dir, args.load_format,
                args.disable_async_output_proc
            ]
        else:
            run_args = [
                warmup_requests, requests, args.model, args.tokenizer, args.quantization,
                args.tensor_parallel_size, args.seed, args.n, args.use_beam_search,
                args.trust_remote_code, args.dtype, args.max_model_len,
                args.enforce_eager, args.kv_cache_dtype,
                args.quantization_param_path, args.device,
                args.enable_prefix_caching, args.enable_chunked_prefill,
                args.max_num_batched_tokens, args.distributed_executor_backend,
                args.gpu_memory_utilization, args.num_scheduler_steps,
                args.use_v2_block_manager, args.download_dir, args.load_format,
                args.disable_async_output_proc
            ]

        if args.async_engine:
            run_args.append(args.disable_frontend_multiprocessing)
            elapsed_time = uvloop.run(run_vllm_async(*run_args))
        else:
            elapsed_time = run_vllm(*run_args, args.use_new_beam_search_impl)
zhuwenwen's avatar
zhuwenwen committed
410
411
412
413
414
415
416
417
418
419
420
421
    elif args.backend == "hf":
        assert args.tensor_parallel_size == 1
        elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
                              args.use_beam_search, args.hf_max_batch_size,
                              args.trust_remote_code)
    elif args.backend == "mii":
        elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
                               args.output_len)
    else:
        raise ValueError(f"Unknown backend: {args.backend}")
    total_num_tokens = sum(prompt_len + output_len
                           for _, prompt_len, output_len in requests)
laibao's avatar
laibao committed
422
    
zhuwenwen's avatar
zhuwenwen committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    if args.dataset is None:
        total_out_tokens = args.output_len * args.num_prompts
    else:
        total_out_tokens = sum(output_len for _, _, output_len in requests) 
    print(f"Latency: {elapsed_time:.2f} s")
    print(f"All Throughput: {len(requests) / elapsed_time:.2f} requests/s, "
          f"{total_num_tokens / elapsed_time:.2f} tokens/s")
    print(f"Generate Throughput: {total_out_tokens / elapsed_time:.2f} tokens/s")


    # Output JSON results if specified
    if args.output_json:
        results = {
            "elapsed_time": elapsed_time,
            "num_requests": len(requests),
            "total_num_tokens": total_num_tokens,
            "requests_per_second": len(requests) / elapsed_time,
            "tokens_per_second": total_num_tokens / elapsed_time,
        }
        with open(args.output_json, "w") as f:
            json.dump(results, f, indent=4)


if __name__ == "__main__":
laibao's avatar
laibao committed
447
    parser = FlexibleArgumentParser(description="Benchmark the throughput.")
zhuwenwen's avatar
zhuwenwen committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    parser.add_argument("--backend",
                        type=str,
                        choices=["vllm", "hf", "mii"],
                        default="vllm")
    parser.add_argument("--dataset",
                        type=str,
                        default=None,
                        help="Path to the dataset.")
    parser.add_argument("--input-len",
                        type=int,
                        default=None,
                        help="Input prompt length for each request")
    parser.add_argument("--output-len",
                        type=int,
                        default=None,
                        help="Output length for each request. Overrides the "
                        "output length from the dataset.")
    parser.add_argument("--model", type=str, default="facebook/opt-125m")
    parser.add_argument("--tokenizer", type=str, default=None)
    parser.add_argument('--quantization',
                        '-q',
                        choices=[*QUANTIZATION_METHODS, None],
                        default=None)
    parser.add_argument("--tensor-parallel-size", "-tp", type=int, default=1)
    parser.add_argument("--n",
                        type=int,
                        default=1,
                        help="Number of generated sequences per prompt.")
    parser.add_argument("--use-beam-search", action="store_true")
    parser.add_argument('--num-iters-warmup',
                        type=int,
                        default=1,
                        help='Number of iterations to run for warmup.')
laibao's avatar
laibao committed
481
    parser.add_argument("--use-new-beam-search-impl", action="store_true")
zhuwenwen's avatar
zhuwenwen committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    parser.add_argument("--num-prompts",
                        type=int,
                        default=1000,
                        help="Number of prompts to process.")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--hf-max-batch-size",
                        type=int,
                        default=None,
                        help="Maximum batch size for HF backend.")
    parser.add_argument('--trust-remote-code',
                        action='store_true',
                        help='trust remote code from huggingface')
    parser.add_argument(
        '--max-model-len',
        type=int,
        default=None,
        help='Maximum length of a sequence (including prompt and output). '
        'If None, will be derived from the model.')
    parser.add_argument(
        '--dtype',
        type=str,
        default='auto',
        choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
        help='data type for model weights and activations. '
        'The "auto" option will use FP16 precision '
        'for FP32 and FP16 models, and BF16 precision '
        'for BF16 models.')
    parser.add_argument('--gpu-memory-utilization',
                        type=float,
                        default=0.9,
                        help='the fraction of GPU memory to be used for '
                        'the model executor, which can range from 0 to 1.'
                        'If unspecified, will use the default value of 0.9.')
    parser.add_argument("--enforce-eager",
                        action="store_true",
                        help="enforce eager execution")
    parser.add_argument(
        '--kv-cache-dtype',
        type=str,
        choices=['auto', 'fp8', 'fp8_e5m2', 'fp8_e4m3'],
        default="auto",
        help='Data type for kv cache storage. If "auto", will use model '
        'data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. '
laibao's avatar
laibao committed
525
        'ROCm (hcu) supports fp8 (=fp8_e4m3)')
zhuwenwen's avatar
zhuwenwen committed
526
527
528
529
530
531
532
533
    parser.add_argument(
        '--quantization-param-path',
        type=str,
        default=None,
        help='Path to the JSON file containing the KV cache scaling factors. '
        'This should generally be supplied, when KV cache dtype is FP8. '
        'Otherwise, KV cache scaling factors default to 1.0, which may cause '
        'accuracy issues. FP8_E5M2 (without scaling) is only supported on '
laibao's avatar
laibao committed
534
        'cuda version greater than 11.8. On ROCm (hcu), FP8_E4M3 is '
zhuwenwen's avatar
zhuwenwen committed
535
        'instead supported for common inference criteria.')
laibao's avatar
laibao committed
536
537
538
539
540
    parser.add_argument("--device",
                        type=str,
                        default="auto",
                        choices=DEVICE_OPTIONS,
                        help='device type for vLLM execution')
zhuwenwen's avatar
zhuwenwen committed
541
    parser.add_argument(
laibao's avatar
laibao committed
542
543
544
545
546
547
548
        "--num-scheduler-steps",
        type=int,
        default=1,
        help="Maximum number of forward steps per scheduler call.")
    parser.add_argument("--use-v2-block-manager",
                        action='store_true',
                        help="Enable block manager v2.")
zhuwenwen's avatar
zhuwenwen committed
549
550
551
    parser.add_argument(
        "--enable-prefix-caching",
        action='store_true',
laibao's avatar
laibao committed
552
        help="Enable automatic prefix caching for vLLM backend.")
zhuwenwen's avatar
zhuwenwen committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    parser.add_argument("--enable-chunked-prefill",
                        action='store_true',
                        help="enable chunked prefill for vLLM backend.")
    parser.add_argument('--max-num-batched-tokens',
                        type=int,
                        default=None,
                        help='maximum number of batched tokens per '
                        'iteration')
    parser.add_argument('--download-dir',
                        type=str,
                        default=None,
                        help='directory to download and load the weights, '
                        'default to the default cache dir of huggingface')
    parser.add_argument(
        '--output-json',
        type=str,
        default=None,
        help='Path to save the throughput results in JSON format.')
    parser.add_argument(
        '--distributed-executor-backend',
        choices=['ray', 'mp'],
        default=None,
        help='Backend to use for distributed serving. When more than 1 GPU '
        'is used, will be automatically set to "ray" if installed '
        'or "mp" (multiprocessing) otherwise.')
laibao's avatar
laibao committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    parser.add_argument(
        '--load-format',
        type=str,
        default=EngineArgs.load_format,
        choices=[
            'auto', 'pt', 'safetensors', 'npcache', 'dummy', 'tensorizer',
            'bitsandbytes'
        ],
        help='The format of the model weights to load.\n\n'
        '* "auto" will try to load the weights in the safetensors format '
        'and fall back to the pytorch bin format if safetensors format '
        'is not available.\n'
        '* "pt" will load the weights in the pytorch bin format.\n'
        '* "safetensors" will load the weights in the safetensors format.\n'
        '* "npcache" will load the weights in pytorch format and store '
        'a numpy cache to speed up the loading.\n'
        '* "dummy" will initialize the weights with random values, '
        'which is mainly for profiling.\n'
        '* "tensorizer" will load the weights using tensorizer from '
        'CoreWeave. See the Tensorize vLLM Model script in the Examples'
        'section for more information.\n'
        '* "bitsandbytes" will load the weights using bitsandbytes '
        'quantization.\n')
    parser.add_argument(
        "--disable-async-output-proc",
        action='store_true',
        default=False,
        help="Disable async output processor for vLLM backend.")
    parser.add_argument("--async-engine",
                        action='store_true',
                        default=False,
                        help="Use vLLM async engine rather than LLM class.")
    parser.add_argument("--disable-frontend-multiprocessing",
                        action='store_true',
                        default=False,
                        help="Disable decoupled async engine frontend.")
zhuwenwen's avatar
zhuwenwen committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    args = parser.parse_args()
    if args.tokenizer is None:
        args.tokenizer = args.model
    if args.dataset is None:
        assert args.input_len is not None
        assert args.output_len is not None
    else:
        assert args.input_len is None

    if args.backend == "vllm":
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
    elif args.backend == "hf":
        if args.hf_max_batch_size is None:
            raise ValueError("HF max batch size is required for HF backend.")
        if args.quantization is not None:
            raise ValueError("Quantization is only for vLLM backend.")
    elif args.backend == "mii":
        if args.dtype != "auto":
            raise ValueError("dtype must be auto for MII backend.")
        if args.n != 1:
            raise ValueError("n must be 1 for MII backend.")
        if args.use_beam_search:
            raise ValueError("Beam search is not supported for MII backend.")
        if args.quantization is not None:
            raise ValueError("Quantization is only for vLLM backend.")
        if args.hf_max_batch_size is not None:
            raise ValueError("HF max batch size is only for HF backend.")
        if args.tokenizer != args.model:
            raise ValueError("Tokenizer must be the same as the model for MII "
                             "backend.")
laibao's avatar
laibao committed
645
    main(args)