backend_request_func.py 15.6 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
5
6
import json
import os
import sys
import time
import traceback
from dataclasses import dataclass, field
laibao's avatar
laibao committed
7
from typing import List, Optional, Union
zhuwenwen's avatar
zhuwenwen committed
8
9

import aiohttp
laibao's avatar
laibao committed
10
import huggingface_hub.constants
zhuwenwen's avatar
zhuwenwen committed
11
from tqdm.asyncio import tqdm
laibao's avatar
laibao committed
12
13
from transformers import (AutoTokenizer, PreTrainedTokenizer,
                          PreTrainedTokenizerFast)
zhuwenwen's avatar
zhuwenwen committed
14
15
16
17
18
19
20
21
22
23
24
25
26

AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)


@dataclass
class RequestFuncInput:
    prompt: str
    api_url: str
    prompt_len: int
    output_len: int
    model: str
    best_of: int = 1
    use_beam_search: bool = False
laibao's avatar
laibao committed
27
28
    logprobs: Optional[int] = None
    multi_modal_content: Optional[dict] = None
zhuwenwen's avatar
zhuwenwen committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75


@dataclass
class RequestFuncOutput:
    generated_text: str = ""
    success: bool = False
    latency: float = 0.0
    ttft: float = 0.0  # Time to first token
    itl: List[float] = field(
        default_factory=list)  # List of inter-token latencies
    prompt_len: int = 0
    error: str = ""


async def async_request_tgi(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        assert not request_func_input.use_beam_search
        params = {
            "best_of": request_func_input.best_of,
            "max_new_tokens": request_func_input.output_len,
            "do_sample": True,
            "temperature": 0.01,  # TGI does not accept 0.0 temperature.
            "top_p": 0.99,  # TGI does not accept 1.0 top_p.
        }
        payload = {
            "inputs": request_func_input.prompt,
            "parameters": params,
        }
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue
laibao's avatar
laibao committed
76
                        chunk_bytes = chunk_bytes.decode("utf-8")
zhuwenwen's avatar
zhuwenwen committed
77

laibao's avatar
laibao committed
78
79
80
81
82
                        #NOTE: Sometimes TGI returns a ping response without
                        # any data, we should skip it.
                        if chunk_bytes.startswith(":"):
                            continue
                        chunk = remove_prefix(chunk_bytes, "data:")
zhuwenwen's avatar
zhuwenwen committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

                        data = json.loads(chunk)
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
                            ttft = time.perf_counter() - st
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp -
                                              most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True
                    output.generated_text = data["generated_text"]
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


async def async_request_trt_llm(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith("generate_stream")

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        assert not request_func_input.use_beam_search
        assert request_func_input.best_of == 1
        payload = {
            "accumulate_tokens": True,
            "text_input": request_func_input.prompt,
            "temperature": 0.0,
            "top_p": 1.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
        }
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"),
                                              "data:")

                        data = json.loads(chunk)
                        output.generated_text += data["text_output"]
                        timestamp = time.perf_counter()
                        # First token
                        if ttft == 0.0:
                            ttft = time.perf_counter() - st
                            output.ttft = ttft

                        # Decoding phase
                        else:
                            output.itl.append(timestamp -
                                              most_recent_timestamp)

                        most_recent_timestamp = timestamp

                    output.latency = most_recent_timestamp - st
                    output.success = True

                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


async def async_request_deepspeed_mii(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        assert request_func_input.best_of == 1
        assert not request_func_input.use_beam_search

        payload = {
            "prompt": request_func_input.prompt,
            "max_tokens": request_func_input.output_len,
            "temperature": 0.01,  # deepspeed-mii does not accept 0.0 temp.
            "top_p": 1.0,
        }
        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        # NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
        # will use 0 as placeholder.
        # See https://github.com/microsoft/DeepSpeed-MII/pull/311
        output.ttft = 0

        st = time.perf_counter()
        try:
            async with session.post(url=request_func_input.api_url,
                                    json=payload) as response:
                if response.status == 200:
                    parsed_resp = await response.json()
                    output.latency = time.perf_counter() - st
                    output.generated_text = parsed_resp["text"][0]
                    output.success = True
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

        if pbar:
            pbar.update(1)
        return output


async def async_request_openai_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
laibao's avatar
laibao committed
230
231
        ("completions", "profile")
    ), "OpenAI Completions API URL must end with 'completions' or 'profile'."
zhuwenwen's avatar
zhuwenwen committed
232
233
234
235
236
237
238
239
240

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        assert not request_func_input.use_beam_search
        payload = {
            "model": request_func_input.model,
            "prompt": request_func_input.prompt,
            "temperature": 0.0,
            "best_of": request_func_input.best_of,
            "max_tokens": request_func_input.output_len,
laibao's avatar
laibao committed
241
            "logprobs": request_func_input.logprobs,
zhuwenwen's avatar
zhuwenwen committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
            "stream": True,
        }
        headers = {
            "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
        }

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload,
                                    headers=headers) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"),
                                              "data: ")
                        if chunk == "[DONE]":
                            latency = time.perf_counter() - st
                        else:
                            data = json.loads(chunk)

laibao's avatar
laibao committed
271
272
273
                            # NOTE: Some completion API might have a last
                            # usage summary response without a token so we
                            # want to check a token was generated
zhuwenwen's avatar
zhuwenwen committed
274
275
276
277
278
279
280
281
                            if data["choices"][0]["text"]:
                                timestamp = time.perf_counter()
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
laibao's avatar
laibao committed
282
                                else:
zhuwenwen's avatar
zhuwenwen committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
                                    output.itl.append(timestamp -
                                                      most_recent_timestamp)

                                most_recent_timestamp = timestamp
                                generated_text += data["choices"][0]["text"]

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


async def async_request_openai_chat_completions(
    request_func_input: RequestFuncInput,
    pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
    api_url = request_func_input.api_url
    assert api_url.endswith(
laibao's avatar
laibao committed
311
312
        "chat/completions"
    ), "OpenAI Chat Completions API URL must end with 'chat/completions'."
zhuwenwen's avatar
zhuwenwen committed
313
314
315

    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
        assert not request_func_input.use_beam_search
laibao's avatar
laibao committed
316
317
318
        content = [{"type": "text", "text": request_func_input.prompt}]
        if request_func_input.multi_modal_content:
            content.append(request_func_input.multi_modal_content)
zhuwenwen's avatar
zhuwenwen committed
319
320
321
322
323
        payload = {
            "model": request_func_input.model,
            "messages": [
                {
                    "role": "user",
laibao's avatar
laibao committed
324
                    "content": content
zhuwenwen's avatar
zhuwenwen committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
                },
            ],
            "temperature": 0.0,
            "max_tokens": request_func_input.output_len,
            "stream": True,
        }
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
        }

        output = RequestFuncOutput()
        output.prompt_len = request_func_input.prompt_len

        generated_text = ""
        ttft = 0.0
        st = time.perf_counter()
        most_recent_timestamp = st
        try:
            async with session.post(url=api_url, json=payload,
                                    headers=headers) as response:
                if response.status == 200:
                    async for chunk_bytes in response.content:
                        chunk_bytes = chunk_bytes.strip()
                        if not chunk_bytes:
                            continue

                        chunk = remove_prefix(chunk_bytes.decode("utf-8"),
                                              "data: ")
                        if chunk == "[DONE]":
                            latency = time.perf_counter() - st
                        else:
                            timestamp = time.perf_counter()
                            data = json.loads(chunk)

                            delta = data["choices"][0]["delta"]
                            if delta.get("content", None):
                                # First token
                                if ttft == 0.0:
                                    ttft = time.perf_counter() - st
                                    output.ttft = ttft

                                # Decoding phase
                                else:
                                    output.itl.append(timestamp -
                                                      most_recent_timestamp)

                                generated_text += delta["content"]

                            most_recent_timestamp = timestamp

                    output.generated_text = generated_text
                    output.success = True
                    output.latency = latency
                else:
                    output.error = response.reason or ""
                    output.success = False
        except Exception:
            output.success = False
            exc_info = sys.exc_info()
            output.error = "".join(traceback.format_exception(*exc_info))

    if pbar:
        pbar.update(1)
    return output


# Since vllm must support Python 3.8, we can't use str.removeprefix(prefix)
# introduced in Python 3.9
def remove_prefix(text: str, prefix: str) -> str:
    if text.startswith(prefix):
        return text[len(prefix):]
    return text


laibao's avatar
laibao committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
def get_model(pretrained_model_name_or_path: str) -> str:
    if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
        from modelscope import snapshot_download

        model_path = snapshot_download(
            model_id=pretrained_model_name_or_path,
            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
            ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])

        return model_path
    return pretrained_model_name_or_path


def get_tokenizer(
    pretrained_model_name_or_path: str, trust_remote_code: bool
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
    if pretrained_model_name_or_path is not None and not os.path.exists(
            pretrained_model_name_or_path):
        pretrained_model_name_or_path = get_model(
            pretrained_model_name_or_path)
    return AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
                                         trust_remote_code=trust_remote_code)


zhuwenwen's avatar
zhuwenwen committed
424
425
426
427
428
429
430
431
ASYNC_REQUEST_FUNCS = {
    "tgi": async_request_tgi,
    "vllm": async_request_openai_completions,
    "lmdeploy": async_request_openai_completions,
    "deepspeed-mii": async_request_deepspeed_mii,
    "openai": async_request_openai_completions,
    "openai-chat": async_request_openai_chat_completions,
    "tensorrt-llm": async_request_trt_llm,
laibao's avatar
laibao committed
432
    "scalellm": async_request_openai_completions,
zhuwenwen's avatar
zhuwenwen committed
433
}