benchmark_moe_permute_unpermute.py 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

import argparse
from typing import Any, TypedDict

import ray
import torch
from transformers import AutoConfig

from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
    _moe_permute,
    _moe_unpermute_and_reduce,
)
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import *
from vllm.model_executor.layers.fused_moe.utils import _fp8_quantize
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser

FP8_DTYPE = current_platform.fp8_dtype()


class BenchmarkConfig(TypedDict):
    BLOCK_SIZE_M: int
    BLOCK_SIZE_N: int
    BLOCK_SIZE_K: int
    GROUP_SIZE_M: int
    num_warps: int
    num_stages: int


def benchmark_permute(
    num_tokens: int,
    num_experts: int,
    hidden_size: int,
    topk: int,
    dtype: torch.dtype,
    use_fp8_w8a8: bool,
    use_int8_w8a16: bool,
    num_iters: int = 100,
    use_customized_permute: bool = False,
) -> float:
    # init_dtype = torch.float16 if use_fp8_w8a8 else dtype
    hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
    # output_hidden_states = torch.empty_like(hidden_states)
    if use_fp8_w8a8:
        align_block_size = 128  # deepgemm needs 128 m aligned block
        qhidden_states, scale = _fp8_quantize(hidden_states, None, None)
    else:
        align_block_size = None
        qhidden_states = hidden_states

    gating_output = torch.randn(num_iters, num_tokens, num_experts, dtype=torch.float32)

    input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)
    topk_weights, topk_ids, token_expert_indices = fused_topk(
        qhidden_states, input_gating, topk, False
    )

    def prepare(i: int):
        input_gating.copy_(gating_output[i])

    def run():
        if use_customized_permute:
            (permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
                moe_permute(
                    qhidden_states,
                    topk_weights=topk_weights,
                    topk_ids=topk_ids,
                    token_expert_indices=token_expert_indices,
                    topk=topk,
                    n_expert=num_experts,
                    n_local_expert=num_experts,
                    expert_map=None,
                    align_block_size=align_block_size,
                )
            )
        else:
            (
                permuted_hidden_states,
                a1q_scale,
                sorted_token_ids,
                expert_ids,
                inv_perm,
            ) = _moe_permute(
                qhidden_states, None, topk_ids, num_experts, None, align_block_size
            )

    # JIT compilation & warmup
    run()
    torch.cuda.synchronize()

    # Capture 10 invocations with CUDA graph
    graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(graph):
        for _ in range(10):
            run()
    torch.cuda.synchronize()

    # Warmup
    for _ in range(5):
        graph.replay()
    torch.cuda.synchronize()

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)

    latencies: list[float] = []
    for i in range(num_iters):
        prepare(i)
        torch.cuda.synchronize()

        start_event.record()
        graph.replay()
        end_event.record()
        end_event.synchronize()
        latencies.append(start_event.elapsed_time(end_event))
    avg = sum(latencies) / (num_iters * 10) * 1000  # us
    graph.reset()
    return avg


def benchmark_unpermute(
    num_tokens: int,
    num_experts: int,
    hidden_size: int,
    topk: int,
    dtype: torch.dtype,
    use_fp8_w8a8: bool,
    use_int8_w8a16: bool,
    num_iters: int = 100,
    use_customized_permute: bool = False,
) -> float:
    # init_dtype = torch.float16 if use_fp8_w8a8 else dtype
    hidden_states = torch.randn(num_tokens, hidden_size, dtype=dtype)
    output_hidden_states = torch.empty_like(hidden_states)
    if use_fp8_w8a8:
        align_block_size = 128  # deepgemm needs 128 m aligned block
        qhidden_states, scale = _fp8_quantize(hidden_states, None, None)
    else:
        align_block_size = None
        qhidden_states = hidden_states

    input_gating = torch.randn(num_tokens, num_experts, dtype=torch.float32)

    topk_weights, topk_ids, token_expert_indices = fused_topk(
        qhidden_states, input_gating, topk, False
    )

    def prepare():
        if use_customized_permute:
            (permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
                moe_permute(
                    qhidden_states,
                    topk_weights=topk_weights,
                    topk_ids=topk_ids,
                    token_expert_indices=token_expert_indices,
                    topk=topk,
                    n_expert=num_experts,
                    n_local_expert=num_experts,
                    expert_map=None,
                    align_block_size=align_block_size,
                )
            )
            # convert to fp16/bf16 as gemm output
            return (
                permuted_hidden_states.to(dtype),
                first_token_off,
                inv_perm_idx,
                m_indices,
            )
        else:
            (
                permuted_qhidden_states,
                a1q_scale,
                sorted_token_ids,
                expert_ids,
                inv_perm,
            ) = _moe_permute(
                qhidden_states, None, topk_ids, num_experts, None, align_block_size
            )
            # convert to fp16/bf16 as gemm output
            return (
                permuted_qhidden_states.to(dtype),
                a1q_scale,
                sorted_token_ids,
                expert_ids,
                inv_perm,
            )

    def run(input: tuple):
        if use_customized_permute:
            (permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = input
            moe_unpermute(
                permuted_hidden_states,
                topk_weights,
                topk_ids,
                inv_perm_idx,
                first_token_off,
                topk,
                num_experts,
                num_experts,
            )
        else:
            (
                permuted_hidden_states,
                a1q_scale,
                sorted_token_ids,
                expert_ids,
                inv_perm,
            ) = input
            _moe_unpermute_and_reduce(
                output_hidden_states, permuted_hidden_states, inv_perm, topk_weights
            )

    # JIT compilation & warmup
    input = prepare()
    run(input)
    torch.cuda.synchronize()

    # Capture 10 invocations with CUDA graph
    graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(graph):
        for _ in range(10):
            run(input)
    torch.cuda.synchronize()

    # Warmup
    for _ in range(5):
        graph.replay()
    torch.cuda.synchronize()

    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)

    latencies: list[float] = []
    for i in range(num_iters):
        torch.cuda.synchronize()
        start_event.record()
        graph.replay()
        end_event.record()
        end_event.synchronize()
        latencies.append(start_event.elapsed_time(end_event))
    avg = sum(latencies) / (num_iters * 10) * 1000  # us
    graph.reset()
    return avg


@ray.remote(num_gpus=1)
class BenchmarkWorker:
    def __init__(self, seed: int) -> None:
        torch.set_default_device("cuda")
        current_platform.seed_everything(seed)
        self.seed = seed
        # Get the device ID to allocate tensors and kernels
        # on the respective GPU. This is required for Ray to work
        # correctly with multi-GPU tuning on the ROCm platform.
        self.device_id = int(ray.get_gpu_ids()[0])

    def benchmark(
        self,
        num_tokens: int,
        num_experts: int,
        hidden_size: int,
        topk: int,
        dtype: torch.dtype,
        use_fp8_w8a8: bool,
        use_int8_w8a16: bool,
        use_customized_permute: bool = False,
    ) -> tuple[dict[str, int], float]:
        current_platform.seed_everything(self.seed)

        permute_time = benchmark_permute(
            num_tokens,
            num_experts,
            hidden_size,
            topk,
            dtype,
            use_fp8_w8a8,
            use_int8_w8a16,
            num_iters=100,
            use_customized_permute=use_customized_permute,
        )
        unpermute_time = benchmark_unpermute(
            num_tokens,
            num_experts,
            hidden_size,
            topk,
            dtype,
            use_fp8_w8a8,
            use_int8_w8a16,
            num_iters=100,
            use_customized_permute=use_customized_permute,
        )
        return permute_time, unpermute_time


def get_weight_block_size_safety(config, default_value=None):
    quantization_config = getattr(config, "quantization_config", {})
    if isinstance(quantization_config, dict):
        return quantization_config.get("weight_block_size", default_value)
    return default_value


def main(args: argparse.Namespace):
    print(args)

    config = AutoConfig.from_pretrained(
        args.model, trust_remote_code=args.trust_remote_code
    )
    if config.architectures[0] == "DbrxForCausalLM":
        E = config.ffn_config.moe_num_experts
        topk = config.ffn_config.moe_top_k
    elif config.architectures[0] == "JambaForCausalLM":
        E = config.num_experts
        topk = config.num_experts_per_tok
    elif (
        config.architectures[0] == "DeepseekV3ForCausalLM"
        or config.architectures[0] == "DeepseekV2ForCausalLM"
        or config.architectures[0] == "Glm4MoeForCausalLM"
    ):
        E = config.n_routed_experts
        topk = config.num_experts_per_tok
    elif config.architectures[0] in ["Qwen2MoeForCausalLM", "Qwen3MoeForCausalLM"]:
        E = config.num_experts
        topk = config.num_experts_per_tok

    else:
        # Support for llama4
        config = config.get_text_config()
        # Default: Mixtral.
        E = config.num_local_experts
        topk = config.num_experts_per_tok

    hidden_size = config.hidden_size
    dtype = torch.float16 if current_platform.is_rocm() else config.torch_dtype
    use_fp8_w8a8 = args.dtype == "fp8_w8a8"
    use_int8_w8a16 = args.dtype == "int8_w8a16"
    use_customized_permute = args.use_customized_permute

    if args.batch_size is None:
        batch_sizes = [
            1,
            2,
            4,
            8,
            16,
            24,
            32,
            48,
            64,
            96,
            128,
            256,
            512,
            1024,
            1536,
            2048,
            3072,
            4096,
        ]
    else:
        batch_sizes = [args.batch_size]

    ray.init()
    num_gpus = int(ray.available_resources()["GPU"])
    workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]

    def _distribute(method: str, inputs: list[Any]) -> list[Any]:
        outputs = []
        worker_idx = 0
        for input_args in inputs:
            worker = workers[worker_idx]
            worker_method = getattr(worker, method)
            output = worker_method.remote(*input_args)
            outputs.append(output)
            worker_idx = (worker_idx + 1) % num_gpus
        return ray.get(outputs)

    outputs = _distribute(
        "benchmark",
        [
            (
                batch_size,
                E,
                hidden_size,
                topk,
                dtype,
                use_fp8_w8a8,
                use_int8_w8a16,
                use_customized_permute,
            )
            for batch_size in batch_sizes
        ],
    )

    for batch_size, (permute, unpermute) in zip(batch_sizes, outputs):
        print(f"Batch size: {batch_size}")
        print(f"Permute time: {permute:.2f} us")
        print(f"Unpermute time: {unpermute:.2f} us")


if __name__ == "__main__":
    parser = FlexibleArgumentParser()
    parser.add_argument(
        "--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1"
    )
    parser.add_argument(
        "--dtype", type=str, choices=["auto", "fp8_w8a8", "int8_w8a16"], default="auto"
    )
    parser.add_argument("--use-customized-permute", action="store_true")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--batch-size", type=int, required=False)
    parser.add_argument("--trust-remote-code", action="store_true")
    args = parser.parse_args()

    main(args)