benchmark_cutlass_fp4_moe.py 14.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Benchmark the performance of the cutlass_moe_fp4 kernel vs the triton_moe
kernel. The cutlass_moe_fp4 kernel takes in fp4 quantized weights and 16-bit
activations. The triton_moe kernel takes in fp8 weights(tensor scaled to fp8)
and 16-bit activations.
"""

import nvtx
import torch
import torch.utils.benchmark as benchmark

from vllm import _custom_ops as ops
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
from vllm.model_executor.layers.fused_moe.fused_moe import fused_experts, fused_topk
from vllm.scalar_type import scalar_types
from vllm.utils import FlexibleArgumentParser

WEIGHT_SHAPES_MOE = {
    "nvidia/DeepSeek-R1-FP4": [
        [256, 8, 2048, 7168],
    ],
}

DEFAULT_MODELS = [
    "nvidia/DeepSeek-R1-FP4",
]

DEFAULT_BATCH_SIZES = [4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]
DEFAULT_TP_SIZES = [1]

PER_ACT_TOKEN_OPTS = [False]
PER_OUT_CH_OPTS = [False]
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max


def to_fp8(tensor: torch.Tensor):
    finfo = torch.finfo(torch.float8_e4m3fn)
    return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
        dtype=torch.float8_e4m3fn
    )


def bench_run(
    results: list[benchmark.Measurement],
    model: str,
    num_experts: int,
    topk: int,
    per_act_token: bool,
    per_out_ch: bool,
    mkn: tuple[int, int, int],
):
    label = "NVFP4 Blockscaled CUTLASS MOE vs FP8 Tensor Scaled Triton"

    sub_label = (
        "{}, num_experts={}, topk={}, per_act_token={} per_out_ch={}, MKN=({})".format(
            model, num_experts, topk, per_act_token, per_out_ch, mkn
        )
    )

    print(f"Testing: {sub_label}")

    (m, k, n) = mkn

    dtype = torch.half
    device = "cuda"
    a = torch.randn((m, k), device=device, dtype=dtype) / 10
    w1 = torch.randn((num_experts, 2 * n, k), device=device, dtype=dtype) / 10
    w2 = torch.randn((num_experts, k, n), device=device, dtype=dtype) / 10

    _, a_fp8_scale = ops.scaled_fp8_quant(a)

    w1_fp8q = torch.empty(
        (num_experts, 2 * n, k), device=device, dtype=torch.float8_e4m3fn
    )
    w2_fp8q = torch.empty((num_experts, k, n), device=device, dtype=torch.float8_e4m3fn)
    w1_fp8scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)
    w2_fp8scale = torch.empty((num_experts, 1, 1), device=device, dtype=torch.float32)

    for expert in range(num_experts):
        w1_fp8q[expert], w1_fp8scale[expert] = ops.scaled_fp8_quant(w1[expert])
        w2_fp8q[expert], w2_fp8scale[expert] = ops.scaled_fp8_quant(w2[expert])

    w1_fp8q_notransp = w1_fp8q.clone()
    w2_fp8q_notransp = w2_fp8q.clone()
    w1_fp8q = w1_fp8q.transpose(1, 2)
    w2_fp8q = w2_fp8q.transpose(1, 2)

    score = torch.randn((m, num_experts), device=device, dtype=dtype)

    topk_weights, topk_ids, _ = fused_topk(a, score, topk, renormalize=False)

    quant_blocksize = 16
    w1_blockscale = torch.empty(
        (num_experts, 2 * n, k // quant_blocksize),
        device=device,
        dtype=torch.float8_e4m3fn,
    )
    w2_blockscale = torch.empty(
        (num_experts, k, n // quant_blocksize), device=device, dtype=torch.float8_e4m3fn
    )

    # n_b_scales = 2 * n if per_out_ch else 1
    # k_b_scales = k if per_out_ch else 1
    w1_fp4 = torch.empty((num_experts, 2 * n, k // 2), device=device, dtype=torch.uint8)
    w2_fp4 = torch.empty((num_experts, k, n // 2), device=device, dtype=torch.uint8)

    w1_gs = torch.empty((num_experts,), device=device, dtype=torch.float32)
    w2_gs = torch.empty((num_experts,), device=device, dtype=torch.float32)
    a1_gs = torch.ones((num_experts,), device=device, dtype=torch.float32)
    a2_gs = torch.ones((num_experts,), device=device, dtype=torch.float32)

    for expert in range(num_experts):
        w1_e = w1[expert]
        w2_e = w2[expert]
        w1_amax = torch.abs(w1_e).max().to(torch.float32)
        w2_amax = torch.abs(w2_e).max().to(torch.float32)
        w1_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w1_amax
        w2_gs[expert] = FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / w2_amax

        w1_fp4[expert], w1_blockscale[expert] = ops.scaled_fp4_quant(
            w1_e, w1_gs[expert]
        )

        w2_fp4[expert], w2_blockscale[expert] = ops.scaled_fp4_quant(
            w2_e, w2_gs[expert]
        )

    def run_triton_moe(
        a: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        w1_scale: torch.Tensor,
        w2_scale: torch.Tensor,
        a_fp8_scale: torch.Tensor,
        num_repeats: int,
    ):
        for _ in range(num_repeats):
            fused_experts(
                a,
                w1,
                w2,
                topk_weights,
                topk_ids,
                use_fp8_w8a8=True,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
                a1_scale=a_fp8_scale,
            )

    def run_cutlass_moe_fp4(
        a: torch.Tensor,
        w1_fp4: torch.Tensor,
        w2_fp4: torch.Tensor,
        w1_blockscale: torch.Tensor,
        w2_blockscale: torch.Tensor,
        w1_gs: torch.Tensor,
        w2_gs: torch.Tensor,
        a1_gs: torch.Tensor,
        a2_gs: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        m: int,
        n: int,
        k: int,
        e: int,
        device: torch.device,
        num_repeats: int,
    ):
        for _ in range(num_repeats):
            with nvtx.annotate("cutlass_moe_fp4", color="green"):
                cutlass_moe_fp4(
                    a=a,
                    a1_gscale=a1_gs,
                    a2_gscale=a2_gs,
                    w1_fp4=w1_fp4,
                    w1_blockscale=w1_blockscale,
                    w1_alphas=w1_gs,
                    w2_fp4=w2_fp4,
                    w2_blockscale=w2_blockscale,
                    w2_alphas=w2_gs,
                    topk_weights=topk_weights,
                    topk_ids=topk_ids,
                    m=m,
                    n=n,
                    k=k,
                    e=num_experts,
                    device=device,
                )

    def run_cutlass_from_graph(
        a: torch.Tensor,
        a1_gscale: torch.Tensor,
        w1_fp4: torch.Tensor,
        w1_blockscale: torch.Tensor,
        w1_alphas: torch.Tensor,
        a2_gscale: torch.Tensor,
        w2_fp4: torch.Tensor,
        w2_blockscale: torch.Tensor,
        w2_alphas: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        m: int,
        n: int,
        k: int,
        e: int,
        device: torch.device,
    ):
        with set_current_vllm_config(
            VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
        ):
            return cutlass_moe_fp4(
                a=a,
                a1_gscale=a1_gs,
                w1_fp4=w1_fp4,
                w1_blockscale=w1_blockscale,
                w1_alphas=w1_alphas,
                a2_gscale=a2_gs,
                w2_fp4=w2_fp4,
                w2_blockscale=w2_blockscale,
                w2_alphas=w2_alphas,
                topk_weights=topk_weights,
                topk_ids=topk_ids,
                m=m,
                n=n,
                k=k,
                e=num_experts,
                device=device,
            )

    def run_triton_from_graph(
        a: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        w1_scale: torch.Tensor,
        w2_scale: torch.Tensor,
        a_fp8_scale: torch.Tensor,
    ):
        with set_current_vllm_config(
            VllmConfig(parallel_config=ParallelConfig(pipeline_parallel_size=1))
        ):
            return fused_experts(
                a,
                w1,
                w2,
                topk_weights,
                topk_ids,
                use_fp8_w8a8=True,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
                a1_scale=a_fp8_scale,
            )

    def replay_graph(graph, num_repeats):
        for _ in range(num_repeats):
            graph.replay()
        torch.cuda.synchronize()

    cutlass_stream = torch.cuda.Stream()
    cutlass_graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(cutlass_graph, stream=cutlass_stream):
        run_cutlass_from_graph(
            a=a,
            a1_gscale=a1_gs,
            w1_fp4=w1_fp4,
            w1_blockscale=w1_blockscale,
            w1_alphas=w1_gs,
            a2_gscale=a2_gs,
            w2_fp4=w2_fp4,
            w2_blockscale=w2_blockscale,
            w2_alphas=w2_gs,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            m=m,
            n=n,
            k=k,
            e=num_experts,
            device=device,
        )
    torch.cuda.synchronize()

    triton_stream = torch.cuda.Stream()
    triton_graph = torch.cuda.CUDAGraph()
    with torch.cuda.graph(triton_graph, stream=triton_stream):
        run_triton_from_graph(
            a,
            w1_fp8q_notransp,
            w2_fp8q_notransp,
            topk_weights,
            topk_ids,
            w1_fp8scale,
            w2_fp8scale,
            a_fp8_scale,
        )
    torch.cuda.synchronize()

    min_run_time = 5
    num_warmup = 5
    num_runs = 25

    globals = {
        # Baseline params
        "w1": w1,
        "w2": w2,
        "score": score,
        "topk": topk,
        "w1_fp8q_notransp": w1_fp8q_notransp,
        "w2_fp8q_notransp": w2_fp8q_notransp,
        "w1_fp8scale": w1_fp8scale,
        "w2_fp8scale": w2_fp8scale,
        "a_fp8_scale": a_fp8_scale,
        # Cutlass params
        "a": a,
        "a1_gscale": a1_gs,
        "w1_fp4": w1_fp4,
        "w1_blockscale": w1_blockscale,
        "w1_alphas": w1_gs,
        "a2_gscale": a2_gs,
        "w2_fp4": w2_fp4,
        "w2_blockscale": w2_blockscale,
        "w2_alphas": w2_gs,
        "topk_weights": topk_weights,
        "topk_ids": topk_ids,
        "m": m,
        "n": n,
        "k": k,
        "e": num_experts,
        "device": device,
        # cuda graph params
        "cutlass_graph": cutlass_graph,
        "triton_graph": triton_graph,
        # Gen params
        "num_runs": num_runs,
        # Kernels
        "run_triton_moe": run_triton_moe,
        "run_cutlass_moe_fp4": run_cutlass_moe_fp4,
        "replay_graph": replay_graph,
    }

    # Warmup
    run_triton_moe(
        a,
        w1_fp8q_notransp,
        w2_fp8q_notransp,
        topk_weights,
        topk_ids,
        w1_fp8scale,
        w2_fp8scale,
        a_fp8_scale,
        num_warmup,
    )

    results.append(
        benchmark.Timer(
            stmt="run_triton_moe(a, w1_fp8q_notransp, w2_fp8q_notransp, topk_weights, topk_ids, w1_fp8scale, w2_fp8scale, a_fp8_scale, num_runs)",  # noqa: E501
            globals=globals,
            label=label,
            sub_label=sub_label,
            description="triton_moe",
        ).blocked_autorange(min_run_time=min_run_time)
    )

    # Warmup
    replay_graph(triton_graph, num_warmup)

    results.append(
        benchmark.Timer(
            stmt="replay_graph(triton_graph, num_runs)",
            globals=globals,
            label=label,
            sub_label=sub_label,
            description="triton_moe_cuda_graphs",
        ).blocked_autorange(min_run_time=min_run_time)
    )

    # Warmup

    run_cutlass_moe_fp4(
        a,
        w1_fp4,
        w2_fp4,
        w1_blockscale,
        w2_blockscale,
        w1_gs,
        w2_gs,
        a1_gs,
        a2_gs,
        topk_weights,
        topk_ids,
        m,
        n,
        k,
        num_experts,
        device,
        num_warmup,
    )

    results.append(
        benchmark.Timer(
            stmt="run_cutlass_moe_fp4(a, w1_fp4, w2_fp4, w1_blockscale, w2_blockscale, w1_alphas, w2_alphas, a1_gscale, a2_gscale, topk_weights, topk_ids, m, n, k, e, device, num_runs)",  # noqa: E501
            globals=globals,
            label=label,
            sub_label=sub_label,
            description="cutlass_moe_fp4",
        ).blocked_autorange(min_run_time=min_run_time)
    )

    # Warmup
    replay_graph(cutlass_graph, num_warmup)

    results.append(
        benchmark.Timer(
            stmt="replay_graph(cutlass_graph, num_runs)",
            globals=globals,
            label=label,
            sub_label=sub_label,
            description="cutlass_moe_fp4_cuda_graphs",
        ).blocked_autorange(min_run_time=min_run_time)
    )


def main(args):
    print("Benchmarking models:")
    for i, model in enumerate(args.models):
        print(f"[{i}]  {model}")

    results: list[benchmark.Measurement] = []

    for model in args.models:
        for tp in args.tp_sizes:
            for layer in WEIGHT_SHAPES_MOE[model]:
                num_experts = layer[0]
                topk = layer[1]
                size_k = layer[2]
                size_n = layer[3] // tp

                if len(args.limit_k) > 0 and size_k not in args.limit_k:
                    continue

                if len(args.limit_n) > 0 and size_n not in args.limit_n:
                    continue

                for per_act_token in PER_ACT_TOKEN_OPTS:
                    for per_out_ch in PER_OUT_CH_OPTS:
                        for size_m in args.batch_sizes:
                            mkn = (size_m, size_k, size_n)
                            bench_run(
                                results,
                                model,
                                num_experts,
                                topk,
                                per_act_token,
                                per_out_ch,
                                mkn,
                            )

    compare = benchmark.Compare(results)
    compare.print()


if __name__ == "__main__":
    parser = FlexibleArgumentParser(
        description="Benchmark NVFP4 CUTLASS MOE across specified models/shapes/batches"
    )
    parser.add_argument(
        "--models",
        nargs="+",
        type=str,
        default=DEFAULT_MODELS,
        choices=WEIGHT_SHAPES_MOE.keys(),
    )
    parser.add_argument("--tp-sizes", nargs="+", type=int, default=DEFAULT_TP_SIZES)
    parser.add_argument(
        "--batch-sizes", nargs="+", type=int, default=DEFAULT_BATCH_SIZES
    )
    parser.add_argument("--limit-k", nargs="+", type=int, default=[])
    parser.add_argument("--limit-n", nargs="+", type=int, default=[])
    parser.add_argument("--limit-num-groups", nargs="+", type=int, default=[])
    parser.add_argument("--limit-per-act-token", nargs="+", type=int, default=[])
    parser.add_argument("--limit-per-out-ch", nargs="+", type=int, default=[])

    args = parser.parse_args()
    main(args)