bench_int8_gemm.py 5.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools

import torch
from weight_shapes import WEIGHT_SHAPES

from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from vllm._custom_ops import scaled_int8_quant as vllm_scaled_int8_quant
from vllm.triton_utils import triton

PROVIDER_CFGS = {
    "torch-bf16": dict(enabled=True),
    "int8-tensor-w-token-a": dict(
        w="tensor", a="token", no_a_quant=False, enabled=False
    ),
    "int8-tensor-w-tensor-a": dict(
        w="tensor", a="tensor", no_a_quant=False, enabled=True
    ),
    "int8-channel-w-token-a": dict(
        w="channel", a="token", no_a_quant=False, enabled=True
    ),
    "int8-channel-w-tensor-a": dict(
        w="channel", a="tensor", no_a_quant=False, enabled=False
    ),
    "int8-tensor-w-token-a-noquant": dict(
        w="tensor", a="token", no_a_quant=True, enabled=False
    ),
    "int8-tensor-w-tensor-a-noquant": dict(
        w="tensor", a="tensor", no_a_quant=True, enabled=True
    ),
    "int8-channel-w-token-a-noquant": dict(
        w="channel", a="token", no_a_quant=True, enabled=True
    ),
    "int8-channel-w-tensor-a-noquant": dict(
        w="channel", a="tensor", no_a_quant=True, enabled=False
    ),
}


def _quant_weight(b, w_type, device):
    if w_type == "tensor":
        scale_b = torch.ones(1, device=device, dtype=torch.float32)
        b_int8, scale_b_int8, _ = vllm_scaled_int8_quant(b, scale_b)
        assert scale_b_int8.numel() == 1
    else:  # channel
        b_int8, scale_b_int8, _ = vllm_scaled_int8_quant(b)
        assert scale_b_int8.numel() == b.shape[0]
    return b_int8.t(), scale_b_int8


def build_int8_runner(cfg, a, b, dtype, device):
    # quant before running the kernel
    b_int8, scale_b_int8 = _quant_weight(b, cfg["w"], device)

    scale_a_const = None
    if cfg["a"] == "tensor":
        scale_a_const = torch.ones(1, device=device, dtype=torch.float32)

    # no quant, create activation ahead
    if cfg["no_a_quant"]:
        if cfg["a"] == "tensor":
            a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a, scale_a_const)
        else:  # token
            a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a)

        def run_quant():
            return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)

        return run_quant

    # dynamic quant, create activation inside
    if cfg["a"] == "tensor":

        def run_quant():
            a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a, scale_a_const)
            return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)

    else:  # token

        def run_quant():
            a_int8, scale_a_int8, _ = vllm_scaled_int8_quant(a)
            return vllm_scaled_mm(a_int8, b_int8, scale_a_int8, scale_b_int8, dtype)

    return run_quant


_enabled = [k for k, v in PROVIDER_CFGS.items() if v.get("enabled")]


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=["batch_size"],
        x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
        x_log=False,
        line_arg="provider",
        line_vals=_enabled,
        line_names=[k for k in _enabled],
        ylabel="TFLOP/s (larger is better)",
        plot_name="BF16 vs INT8 GEMMs",
        args={},
    )
)
def benchmark(batch_size, provider, N, K):
    M = batch_size
    device = "cuda"
    dtype = torch.bfloat16
    a = torch.randn((M, K), device=device, dtype=dtype)
    b = torch.randn((N, K), device=device, dtype=dtype)

    quantiles = [0.5, 0.2, 0.8]

    if provider == "torch-bf16":
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
            lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
        )
    else:
        cfg = PROVIDER_CFGS[provider]
        run_quant = build_int8_runner(cfg, a, b, dtype, device)
        ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
            lambda: run_quant(), quantiles=quantiles
        )

    to_tflops = lambda t_ms: (2 * M * N * K) * 1e-12 / (t_ms * 1e-3)
    return to_tflops(ms), to_tflops(max_ms), to_tflops(min_ms)


def prepare_shapes(args):
    KN_model_names = []
    for model, tp_size in itertools.product(args.models, args.tp_sizes):
        for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
            KN[tp_dim] //= tp_size
            KN.append(model)
            KN_model_names.append(KN)
    return KN_model_names


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--models",
        nargs="+",
        type=str,
        default=["meta-llama/Llama-3.1-8B-Instruct"],
        choices=list(WEIGHT_SHAPES.keys()),
        help="List of models to benchmark",
    )
    parser.add_argument(
        "--tp-sizes",
        nargs="+",
        type=int,
        default=[1],
        help="List of tensor parallel sizes",
    )
    args = parser.parse_args()

    for K, N, model in prepare_shapes(args):
        print(f"{model}, N={N} K={K}, BF16 vs INT8 GEMMs TFLOP/s:")
        benchmark.run(
            print_data=True,
            show_plots=True,
            save_path=f"bench_int8_res_n{N}_k{K}",
            N=N,
            K=K,
        )

    print("Benchmark finished!")