auto_tune.sh 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/bin/bash

# This script aims to tune the best server parameter combinations to maximize throughput for given requirement. 
# The current server parameter combination is  max_num_seqs and max_num_batched_tokens
# It also supports additional requirement: e2e latency and prefix cache. 

# Pre-requisite:
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version. 
# 2. If the model is customized, replace the MODEL's config with the customized config.
# 3. Set variables (ALL REQUIRED)
#   BASE: your directory for vllm repo
#   MODEL: the model served by vllm
#   SYSTEM: the hardware, choice TPU or GPU, for other systems, "get best profile" might not support.
#   TP: ways of tensor parallelism
#   DOWNLOAD_DIR: directory to download and load model weights.
#   INPUT_LEN: request input len
#   OUTPUT_LEN: request output len
#   MIN_CACHE_HIT_PCT: prefix cache rate
#   MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
#   NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
#   NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
#   Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file. 


# Example use cases 
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
# Use INPUT_LEN=1800,  OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
# Use INPUT_LEN=1800,  OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
# 3. If we want to reach 60% prefix cache, what's the best server parameter? 
# Use INPUT_LEN=1800,  OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500

TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
NUM_BATCHED_TOKENS_LIST="512 1024 2048 4096"

LOG_FOLDER="$BASE/auto-benchmark/$TAG"
RESULT="$LOG_FOLDER/result.txt"
PROFILE_PATH="$LOG_FOLDER/profile"

echo "result file: $RESULT"
echo "model: $MODEL"

rm -rf $LOG_FOLDER
rm -rf $PROFILE_PATH
mkdir -p $LOG_FOLDER
mkdir -p $PROFILE_PATH

cd "$BASE/vllm"

pip install -q datasets

current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"

best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
best_goodput=0

start_server() {
    local gpu_memory_utilization=$1
    local max_num_seqs=$2
    local max_num_batched_tokens=$3
    local vllm_log=$4
    local profile_dir=$5
    
    pkill -f vllm

    VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir vllm serve $MODEL \
        --disable-log-requests \
        --port 8004 \
        --gpu-memory-utilization $gpu_memory_utilization \
        --max-num-seqs $max_num_seqs \
        --max-num-batched-tokens $max_num_batched_tokens \
        --tensor-parallel-size $TP \
        --enable-prefix-caching \
        --load-format dummy \
        --download-dir "$DOWNLOAD_DIR" \
        --max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &

    # wait for 10 minutes...
    server_started=0
    for i in {1..60}; do  
        RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
        STATUS_CODE=$(echo "$RESPONSE" | tail -n 1) 
        if [[ "$STATUS_CODE" -eq 200 ]]; then
            server_started=1
            break
        else
            sleep 10
        fi
    done
    if (( ! server_started )); then
        echo "server did not start within 10 minutes. Please check server log at $vllm_log".
        return 1
    else
        return 0
    fi
}

update_best_profile() {
    local profile_dir=$1
    local profile_index=$2
    sorted_paths=($(find "$profile_dir" -maxdepth 1 -not -path "$profile_dir" | sort))
    selected_profile_file=
    if [[ "$SYSTEM" == "TPU" ]]; then
        selected_profile_file="${sorted_paths[$profile_index]}/*.xplane.pb"
    fi 
    if [[ "$SYSTEM" == "GPU" ]]; then
        selected_profile_file="${sorted_paths[$profile_index]}"
    fi 
    rm -f $PROFILE_PATH/*
    cp $selected_profile_file $PROFILE_PATH
}

run_benchmark() {
    local max_num_seqs=$1
    local max_num_batched_tokens=$2
    local gpu_memory_utilization=$3
    echo "max_num_seq: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
    local vllm_log="$LOG_FOLDER/vllm_log_${max_num_seqs}_${max_num_batched_tokens}.txt"
    local profile_dir="$LOG_FOLDER/profile_${max_num_seqs}_${max_num_batched_tokens}"
    echo "vllm_log: $vllm_log"
    echo
    rm -f $vllm_log
    mkdir -p $profile_dir
    pkill -f vllm
    local profile_index=0

    echo "starting server..."
    start_server $gpu_memory_utilization $max_num_seqs $max_num_batched_tokens $vllm_log $profile_dir
    result=$?
    if [[ "$result" -eq 1 ]]; then
        echo "server failed to start. gpu_memory_utilization:$gpu_memory_utilization, max_num_seqs:$max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens"
    else
        echo "server started."
    fi
    echo
    
    echo "run benchmark test..."
    meet_latency_requirement=0
    # get a basic qps by using request-rate inf
    bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
    prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
    python benchmarks/benchmark_serving.py \
        --backend vllm \
        --model $MODEL  \
        --dataset-name random \
        --random-input-len $INPUT_LEN \
        --random-output-len $OUTPUT_LEN \
        --ignore-eos \
        --disable-tqdm \
        --request-rate inf \
        --percentile-metrics ttft,tpot,itl,e2el \
        --goodput e2el:$MAX_LATENCY_ALLOWED_MS \
        --num-prompts 1000 \
        --random-prefix-len $prefix_len \
        --port 8004 \
        --profile &> "$bm_log"
    throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
    e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
    goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')

    if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
        meet_latency_requirement=1
        request_rate=inf
    fi

    if (( ! meet_latency_requirement )); then
    # start from request-rate as int(throughput) + 1
        request_rate=$((${throughput%.*} + 1))
        while ((request_rate > 0)); do
            profile_index=$((profile_index+1))
            # clear prefix cache
            curl -X POST http://0.0.0.0:8004/reset_prefix_cache
            sleep 5
            bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
            python benchmarks/benchmark_serving.py \
                --backend vllm \
                --model $MODEL  \
                --dataset-name random \
                --random-input-len $INPUT_LEN \
                --random-output-len $OUTPUT_LEN \
                --ignore-eos \
                --disable-tqdm \
                --request-rate $request_rate \
                --percentile-metrics ttft,tpot,itl,e2el \
                --goodput e2el:$MAX_LATENCY_ALLOWED_MS \
                --num-prompts 100 \
                --random-prefix-len $prefix_len \
                --port 8004 &> "$bm_log"
            throughput=$(grep "Request throughput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
            e2el=$(grep "P99 E2EL (ms):" "$bm_log" | awk '{print $NF}')
            goodput=$(grep "Request goodput (req/s):" "$bm_log" | sed 's/[^0-9.]//g')
            if (( $(echo "$e2el <= $MAX_LATENCY_ALLOWED_MS" | bc -l) )); then
                meet_latency_requirement=1
                break
            fi
            request_rate=$((request_rate-1))
        done
    fi
    # write the results and update the best result.
    if ((meet_latency_requirement)); then
        echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput"
        echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens, request_rate: $request_rate, e2el: $e2el, throughput: $throughput, goodput: $goodput" >> "$RESULT"
        if (( $(echo "$throughput > $best_throughput" | bc -l) )); then
            best_throughput=$throughput
            best_max_num_seqs=$max_num_seqs
            best_num_batched_tokens=$max_num_batched_tokens
            best_goodput=$goodput
            if [[ "$SYSTEM" == "TPU" ]]; then
                update_best_profile "$profile_dir/plugins/profile" $profile_index
            fi
            if [[ "$SYSTEM" == "GPU" ]]; then
                update_best_profile "$profile_dir" $profile_index
            fi
        fi
    else
        echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}"
        echo "max_num_seqs: $max_num_seqs, max_num_batched_tokens: $max_num_batched_tokens does not meet latency requirement ${MAX_LATENCY_ALLOWED_MS}" >> "$RESULT"
    fi

    echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput"

    pkill vllm
    sleep 10
    printf '=%.0s' $(seq 1 20)
    return 0
}

read -r -a num_seqs_list <<< "$NUM_SEQS_LIST"
read -r -a num_batched_tokens_list <<< "$NUM_BATCHED_TOKENS_LIST"

# first find out the max gpu-memory-utilization without HBM OOM.
gpu_memory_utilization=0.98
find_gpu_memory_utilization=0
while (( $(echo "$gpu_memory_utilization >= 0.9" | bc -l) )); do
    start_server $gpu_memory_utilization "${num_seqs_list[-1]}" "${num_batched_tokens_list[-1]}" "$LOG_FOLDER/vllm_log_gpu_memory_utilization_$gpu_memory_utilization.log"
    result=$?
    if [[ "$result" -eq 0 ]]; then
        find_gpu_memory_utilization=1
        break
    else
        gpu_memory_utilization=$(echo "$gpu_memory_utilization - 0.01" | bc)
    fi
done

if [[ "$find_gpu_memory_utilization" -eq 1 ]]; then
    echo "Using gpu_memory_utilization=$gpu_memory_utilization to serve model."
else
    echo "Cannot find a proper gpu_memory_utilization over 0.9 to serve the model, please check logs in $LOG_FOLDER."
    exit 1
fi

for num_seqs in "${num_seqs_list[@]}"; do
    for num_batched_tokens in "${num_batched_tokens_list[@]}"; do
        run_benchmark $num_seqs $num_batched_tokens $gpu_memory_utilization
    done
done
echo "finish permutations"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"